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ASMs

An alternating sign matrix (ASM) of size n is an n × n matrix with
entries in the set {0, 1,−1} such that

I all row and column sums are equal to 1,
I and the non-zero entries alternate in each row and column.

Clearly all permutation matrices are also ASMs.
For instance, there are 7 ASMs of order 3, these are the six
permutation matrices and the matrix0 1 0

1 −1 1
0 1 0

 .



ASMs Enumeration

Mills, Robbins and Rumsey conjectured that the number of ASMs
of size n is given by

1!4!7! · · · (3n − 2)!

n!(n + 1)! · · · (2n − 1)!

or, in product notation

n−1∏
j=0

(3j + 1)!

(n + j)!
.

This conjecture was later proved by Doron Zeilberger and
independently by Greg Kuperberg.
Zeilberger’s proof was 84 pages long! Kuperberg’s was 5 pages!!



How were they first defined?

Given a matrix A, we let Ai
j denote the matrix that remains when

the ith row and jth column of A are deleted. If we remove more
than one row or column, then the indices corresponding to those
are added to the super- and sub- scripts.

Theorem (Desnanot-Jacobi adjoint matrix theorem)
If A is an n × n matrix, then

det(A) det(A1,n
1,n) = det(A1

1) det(An
n)− det(A1

n) det(An
1)

or

det(A) =
1

det(A1,n
1,n)
× det

(
det(A1

1) det(A1
n)

det(An
1) det(An

n)

)
.

This gives us a way of evaluating determinants, in terms of smaller
determinants.



More determinants

Reverend Charles L. Dodgson, better known by his pen name of
Lewis Carroll used Desnanot-Jacobi theorem to give an algorithm
for evaluating determinants in terms of 2× 2 determinants.
For instance, we get

det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =
1

a2,2

× det

det

(
a2,2 a2,3
a3,2 a3,3

)
det

(
a2,1 a2,2
a3,1 a3,2

)
det

(
a1,2 a1,3
a2,2 a2,3

)
det

(
a1,1 a1,2
a2,1 a2,2

)
 .



Even more determinants

det


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 = 1

det

a2,2 a2,3
a3,2 a3,3



× det


det

a2,2 a2,3 a2,4
a3,2 a3,3 a3,4
a4,2 a4,3 a4,4

 det

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3


det

a1,2 a1,3 a1,4
a2,2 a2,3 a2,4
a3,2 a3,3 a3,4

 det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3



 .



Generalizing the determinant

In the 1980s, Robbins and Rumsey looked at a generalization of the
2× 2 determinant, which they called the λ-determinant.
They defined

det
λ

(
a1,1 a1,2
a2,1 a2,2

)
= a1,1a2,2 + λa2,1a1,2.

Using the previous observations, they generalized it to an n × n
determinant.



ASMs and Determinants

Their main result in this direction was

Theorem (Robbins-Rumsey)
Let A be an n × n matrix with entries ai ,j , An be the set of all
ASMs, I(B) be the inversion number of B and N (B) be the
number of −1’s in B . Then

det
λ

(A) =
∑
B∈An

λI(B)(1 + λ−1)N (B)
n∏

i ,j=1

a
Bi,j

i ,j .

This was the first appearance of an ASM in the literature.



What’s the inversion number?

An easy way to calculate the inversion number is to take products
of all pairs of entries for which one of them lies to the right and
above the other, and then adding them all up.

0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0


There are seven pairs here whose product is +1 and two pairs
whose product is −1. So the inversion number is 5.



How does one get a formula from this?

First some observations 
0 0 1 0
0 1 0 0
1 −1 0 1
0 1 0 0


There can be only one 1 in the top row (or, first column). Let An,k

be the number of n × n ASMs with a 1 at the top of top kth
column. Some thought will give us, An,k = An,n+1−k (symmetry).

Further, if An is the number of n × n ASMs, then
An,1 = An,n = An−1.



Guessing the formula

This allows one to check small values to get a formula. Mills,
Robbins and Rumsey did exactly that.

They first conjectured

An,k

An,k+1
=

k(2n − k − 1)

(n − k)(n + k − 1)
.

This means that the An.k ’s are uniquely determined by the An,k−1’s
when k > 1 and by An,1 =

∑n−1
k=1 An−1,k .



Towards a final formula

The above conjecture can be reformulated as

An,k =

(
n + k − 2
k − 1

)
(2n − k − 1)!

(n − k)!

n−2∏
j=0

(3j + 1)!

(n + j)!
.

From here, knowing that An = An+1,1 allows one to conjecture the
formula in our first slide.



History of the proof

Doron Zeilberger succeeded in proving the formula (called the ASM
conjecture) in 1996 using constant term identities. The proof ran
for 84 pages and involved a team of referees to check all the details.

Shortly after, Greg Kuperberg gave an alternate proof by exploiting
a connection between ASMs and statistical physics. It turned out
that physicists have been studying ASMs under a different guise.



ASMs and statistical physics

ASMs and Square Ice



Does the story end here?

In the late 1980’s Richard Stanley suggested the study of various
symmetry classes of ASMs; this let Robbins to conjecture formulas
for many of these classes.

It turned out to be as difficult as enumrating ASMs, and this study
was only recently completed in 2016.



Symmetry Classes

I Vertically Symmetric ASMs: ai ,j = ai ,n+1−j , n odd (Kuperberg
2002)

I Half-turn Symmetric ASMs: ai ,j = an+1−i ,n+1−j , n odd
(Razumov-Stroganov 2005), n even (Kuperberg 2002)

I Diagonally Symmetric ASMs: ai ,j = aj ,i , no ’nice’ formula
I Quarter-turn Symmetric ASMs: ai ,j = aj ,n+1−i , n odd

(Razumov-Stroganov 2005), n even (Kuperberg 2002)
I Horizontally and vertically Symmetric ASMs:

ai ,j = ai ,n+1−j = an+1−i ,j , n odd (Okada 2004)
I Diagonally and Antidiagonally Symmetric ASMs:

ai ,j = aj ,i = an+1−j ,n+1−i , n odd (Behrend-Fischer-Konvalinka
2017)

I All symmetries: ai ,j = aj ,i = ai ,n+1−j , no ’nice’ formula.



Other objects

Are ASMs worth studying only because they are difficult to
enumerate?

NO!

They are intimately related to other objects that combinatorialists
study. We give a few examples.



Plane Partitions

A plane partition in an a× b × c box is a subset

PP ⊂ {1, 2, · · · , a} × {1, 2, · · · , b} × {1, 2, · · · , c}

with (i ′, j ′, k ′) ∈ PP if (i , j , k) ∈ PP and (i ′, j ′, k ′) ≤ (i , j , k).



Cyclically Symmetric Plane Partitions
A plane partition in an n × n × n box is called cyclically symmetric
if (j , k , i) ∈ PP when (i , j , k) ∈ PP .

George Andrews in 1979 proved that the number of cyclically
symmetric plane partitions in an n × n × n box is

n−1∏
j=0

(3j + 2)(3j)!

(n + j)!
.



ASMs and Plane Partitions

If a plane partition has all the symmetries and is its own
complement, then it is called totally symmetric self-complementary
plane partitions.

This class of plane partitions inside a 2n × 2n × 2n box are
equinumerous with n × n ASMs!



Alternating Sign Triangles (ASTs)

An AST of size n is a triangular array

a1,1 a1,2 . . . a1,2n−2 a1,2n−1
a2,2 . . . a2,2n−2

...
an,n

such that

I the entries are either 1,−1 or 0,
I along the columns and rows the non-zero entries alternate,
I the first non-zero entry from the top is a 1 and the rowsums

are equal to 1.



Example
Following is an AST of order 3.

0 0 1 0 0
1 −1 1

1

There are 7 ASTs of order 3. The other six are

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 ; 1 0 0 0 ; 1 0 0

1 1 1

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 ; 0 0 1 ; 0 0 1

1 1 1



ASTs and ASMs

Theorem (Ayyer-Behrend-Fischer)
The number of ASMs of size n is equal to the number of ASTs of
order n.

There are other combinatorial objects which are equinumerous with
ASMs, and one of the major open problems in enumerative
combinatorics is to find bijections between such objects.



Refined Enumeration of ASMs

The study began with conjectures by Robbins about the number of
ASMs of order n with the position of the 1 in the first row at the
kth column is given by

A(n, k) =

(
n + k − 2
k − 1

)
(2n − k − 1)!

(n − k)!

n−2∏
j=0

3j + 1)!

(n + j)!
.

This was proved by Zeilberger (1996).

Several people have worked on the refined enumration of ASMs as
well as their symmetry classes: Behrend, Fischer, Romik,
Razumov-Stroganov, Ayyer-Romik, Romik-Karlinsky, etc.



VSASMs

In the case of VASAMs, it turns out that in the second row of such
matrices there are exactly two occurrences of 1,

0 0 0 1 0 0 0
0 1 0 −1 0 1 0
1 −1 0 1 0 −1 1
0 0 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


.



Fischer’s Conjecture

Razumov and Stroganov has a formula counting the number of
VSASMs with a fixed one in the first column.

Ilse Fischer had conjectured that the number of (2n + 1)× (2n + 1)
VSASMs, where the first one in the second row is in the ith column
is equal to

(2n + i − 2)!(4n − i − 1)!

2n−1(4n − 2)!(i − 1)!(2n − i)!

n−1∏
j=1

(6j − 2)!(2j − 1)!

(4j − 1)!(4j − 2)!

 . (1)

We will prove this conjecture.



Bijection between ASMs and Six Vertex Model
Kuperberg’s proof of the ASM conjecture was by exploiting a
bijection between the ASMs and a model in statistical physics,
called the six-vertex model.

x1

x2

x3

x4

y1 y2 y3 y4

Figure: Six Vertex Model with Domain Wall Boundary Condition.



Bijection between ASMs and Six Vertex Model
A state of a corresponding six-vertex model is an orientation on the
edges of this graph, such that both the in-degree and the
out-degree of each vertex with degree 4 is 2.

x1

x2

x3

x4

y1 y2 y3 y4

Figure: Six Vertex Model with Domain Wall Boundary Condition.



The Bijection

If we associate to each of the degree 4 vertex in a six-vertex state
with a number, as given in the figure below

1 −1 0 0 0 0

Figure: The corresponding states of the six-vertex model and the entries
of an ASM.

then we obtain a matrix with entries in the set {0, 1,−1}.

Such a matrix will be an ASM, and we get a bijection between
ASMs and states of the six-vertex model.



Example

x1

x2

x3

x4

y1 y2 y3 y4

Figure: Six Vertex Model with
Domain Wall Boundary Condition.


0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1





Weighted Enumeration

I We assign to each vertex v , a weight w(v).
I Weight of a state C is W (C ) =

∏
v∈C w(v).

I Generating function or the partition function Zn =
∑

C W (C ).
I Specializing the parameters in Zn, we get enumeration results.



Our Weights

q is a parameter, which we will specialize later, x =
1
x

= x−1 and

σ(x) = x − x .

σ(q2) σ(q2) σ(qu) σ(qu) σ(qū) σ(qū)

Figure: The weights of the vertices of an ASM with spectral parameter u.

We normalize further by σ(q2) so that we have all entries 1 and −1
to have weight 1.



How are weights assigned?

x1

x2

x3

x4

y1 y2 y3 y4

A vertex lying at the intersection of a vertical line with parameter
yj and a horizontal line with parameter xi is assigned the weight

xi
yj
.



Another type of ASM

In order to study VSASMs we need what are called U-turn domain
boundary wall conditions.

The set of VASAMs is a subset of what are called U-turn ASMs or
ASMs with U-turn boundary (UASMs).

We will explain this connection shortly.



UASMs
An U-turn ASM is an 2n × n array which satisfies the usual
properties of ASMs if one looks at it vertically.

However, if one looks at it horizontally then the 1’s and −1’s
alternate if we start along an odd numbered row from left to right
and then continue along the next even numbered row from right to
left.

0 1

1 −1

0 1

0 0

x1

x1

x2

x2

bx1

bx2

y1 y2

Figure: An U-turn ASM with the corresponding six-vertex state.



New weights

As can be seen from the figure, we add an additional parameter on
the U-turns.

This gives rise to two new type of vertices whose corresponding
weights are given below.

σ(bu) σ(bu)

Figure: Weights of the new vertices.



Partition Function

Tsuchiya was the first to consider a U-turn domain wall boundary
condition, and gave a partition function for them.

ZU(n; x, y) =
σ(q2)n

∏
i (σ(byi )σ(q2x2

i ))
∏

i ,j(σ
′(xiyj)σ

′(xiyj))∏
i<j(σ(xixj)σ(yiy j))

∏
i≤j(σ(xixj)σ(yiyj))

× detMU(n; x, y), (2)

where σ′(x) = σ(qx)σ(qx) and MU is an n × n matrix defined as

MU(n; x, y)i ,j =
1

σ′(xiy j)
− 1
σ′(xiyj)

.



Some observations

I VSASMs occur only for odd order.



0 0 0 1 0 0 0
0 1 0 −1 0 1 0
1 −1 0 1 0 −1 1
0 0 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


.



Some observations

I VSASMs occur only for odd order.
I We need only the first n + 1 columns of the VSASM to know

the full matrix.
I The middle column is an alternating row with 1 and -1.



0 0 0 1 0 0 0
0 1 0 −1 0 1 0
1 −1 0 1 0 −1 1
0 0 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


.



Some observations

I VSASMs occur only for odd order.
I We need only the first n + 1 columns of the VSASM to know

the full matrix.
I The middle column is an alternating row with 1 and -1.
I So, n columns are sufficient to know the whole matrix.
I Moreover, the first and last rows are always the same.



Transformation
We can transform a VSASM into an USASM in two steps:

I Delete the last row.
I Connect pairwise the alternating edges on the right most

column of the 2n × n matrix.

Figure: Transformation of a VSASM into an UASM.

Notice that all U-turns are downward pointing.



Proof of Fischer’s Conjecture

Theorem (Fischer-S., 2019)
The number of (2n + 1)× (2n + 1) VSASM with a 1 in the i-th
position in it’s second row is given by

(2n + i − 2)!(4n − i − 1)!

2n−1(4n − 2)!(i − 1)!(2n − i)!

n−1∏
j=1

(6j − 2)!(2j − 1)!

(4j − 1)!(4j − 2)!

 . (3)



How to transfer to the partition function?

We will specialize

(x1, . . . , xn) = (x , 1, . . . , 1) and (y1, . . . , yn) = (1, . . . , 1),

as well as
b = q and q + q̄ = 1, (4)

in the partition function.

When b = q and xi = 1 for i > 1 implies that the configurations
that have at least one up-pointing U-turn in positions 2, 3, . . . , n
have weight

σ(bū) = σ(q × q̄) = 0

and can therefore be omitted.



Proof

For the remaining configurations we can distinguish between the
cases where the topmost U-turn is down-pointing (Case 1) or not
(Case 2).

Let us denote the numbers that we are interested in by
AV(2n + 1, i).

Case 1. If the topmost U-turn is down-pointing, then the top row
is forced and all vertex configurations are of type .

In the second row, there is precisely one configuration of type ,
say in position i counted from the left, and the configurations right
of it are all of type , while the configurations left of it are of

type .



Case 1

Such configurations correspond to (2n + 1)× (2n + 1) VSASMs
that have the first 1 in the second row in the i-th column.

The top U-turn contributes σ(q2x), while all other n − 1 U-turns
contribute σ(q2).

In total such a configuration has the following weight(
σ(qx)

σ(q2)

)2n−i (σ(qx̄)

σ(q2)

)i−1

σ(q2x)σ(q2)n−1.

This case contributes the following term towards the partition
function
n∑

i=1

AV(2n+1, i)
(
σ(qx̄)

σ(qx)

)i (σ(qx)

σ(q2)

)2n (σ(qx̄)

σ(q2)

)−1

σ(q2x)σ(q2)n−1.



Case 2
Case 2. If the topmost U-turn is up-pointing, there is a unique
occurrence of in the top row, say in position i . There is either

one occurrence of in the second row, say in position j with
1 ≤ j < i , or no such occurrence.

In the first case, the weight is(
σ(qx)

σ(q2)

)2i−j−2(σ(qx̄)

σ(q2)

)2n−2i+j−1

σ(x̄)σ(q2)n−1.

We notice that for fixed i , these configurations give rise to all the
configurations counted by AV(2n + 1, j).

So, this case contributes the following term towards the partition
function
n∑

j=1

AV(2n+1, j)
(
σ(qx̄)

σ(qx)

)j n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)2n−2i−2

σ(x̄)σ(q2)n−1.



Case 2. contd.

In the second case the weight is(
σ(qx)

σ(q2)

)i (σ(qx̄)

σ(q2)

)2n−i−1

σ(x̄)σ(q2)n−1.

We notice that such configurations are essentially the same as the
ones counted by AV(2n + 1, i) with just the first U-turn reversed,so
this contributes the following term towards the partition function

n∑
i=1

AV(2n + 1, i)
(
σ(qx)

σ(qx̄)

)i (σ(qx̄)

σ(q2)

)2n−1

σ(x̄)σ(q2)n−1.



Partition function relation

Combining the three cases that we got, we have

ZU (n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

) =
n∑

i=1
AV(2n + 1, i)

(
σ(qx)

σ(qx̄)

)i (
σ(qx̄)

σ(q2)

)2n−1
σ(x̄)σ(q2)n−1

+
n∑

j=1
AV(2n + 1, j)

(
σ(qx̄)

σ(qx)

)j n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2 (
σ(qx̄)

σ(q2)

)2n−2i−2
σ(x̄)σ(q2)n−1

+
n∑

i=1
AV(2n + 1, i)

(
σ(qx̄)

σ(qx)

)i (
σ(qx)

σ(q2)

)2n (
σ(qx̄)

σ(q2)

)−1
σ(q2x)σ(q2)n−1

, (5)



Partition function relation

We replace

z =
σ(qx̄)

σ(qx)

and eliminate x .

A tedious but straight forward computation shows that

− σ(q2)nσ(qx̄)−2n 1 + z

1− 2z
ZU(n; x , 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=
n∑

i=1

AV(2n + 1, i)
(
z i−2n−1 + z−i

)
. (6)



Final calculations
Using results by Okada with some simplifications we would also get
the following in our case.

− σ(q2)2n−1σ(qx̄)−2n 1 + z

1− 2z
σ(q2x2)3−n(n−1)

× Sp4n(n − 1, n − 1, . . . , 0, 0; x2, 1, . . . , 1)

=
n∑

i=1

AV(2n + 1, i)
(
z i−2n−1 + z−i

)
. (7)

Here

Sp2n(λ1, . . . , λn; x1, . . . , xn) =
W−(λ1 + n, λ2 + n − 1, . . . , λn + 1; x1, . . . , xn)

W−(n, n − 1, . . . , 1; x1, . . . , xn)
,

and
W−(α1, . . . , αn; x1, . . . , xn) = det

1≤i,j≤n

(
x
αj

i − x
−αj

i

)
.



Final Calculations contd.

Again using results of Razumov and Stroganov with lots of
simplifications we shall arrive at

Sp4n(n − 1, n − 1, n − 2, n − 2, . . . , 0, 0; x2, 1, . . . , 1)

= 3n(n−1)

(
σ(qx̄)

σ(q2)

)2n−2 2n∑
i=2

AO(2n, i)z−i+2,

where

AO(2n, i) =


0, if i = 0, 1;

1

2n−1

n−1∏
k=1

(6k − 2)!(2k − 1)!

(4k − 1)!(4k − 2)!

i−1∑
k=1

(−1)i+k−1 (2n + k − 2)!(4n − k − 1)!

(4n − 2)!(k − 1)!(2n − k)!
, for i ≥ 2.

(8)



Final Step

All that is now left to be done is to combine all of the previous
equations to get the following relation

AV(2n + 1, i) = AO(2n, i) + AO(2n, i + 1). (9)

Putting in the values of AO(2n, i) will now give us the theorem

AV(2n+1, i) =
(2n + i − 2)!(4n − i − 1)!

2n−1(4n − 2)!(i − 1)!(2n − i)!

n−1∏
k=1

(6k − 2)!(2k − 1)!

(4k − 1)!(4k − 2)!
.



Other Symmetry Classes?

I We have formulas for many of the symmetry classes as well as
other type of ASMs.

I But the derivations become more complicated.
I In some cases the results are in terms of generating functions.



Vertically and Horizontally Symmetric ASMs



0 0 0 0 1 0 0 0 0
0 0 0 1 −1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 −1 0 0 1 0
1 −1 1 −1 1 −1 1 −1 1
0 1 0 0 −1 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 1 −1 1 0 0 0
0 0 0 0 1 0 0 0 0


.



VHSASMs

Theorem (Fischer-S., 2019)
Let AVH(4n + 3, i) denote the number of VHSASMs of order
4n + 3, with the first occurrence of a 1 in the second row be in the
i-th column. Then, for all n ≥ 1 the following is satisfied

3−n2
(1− z2)

(
2n∑
i=2

AO(2n, i)z−i

)
 ∑

1≤j≤i≤n+1

Qn,i (zq − 1)n+i−2j+1(q − z)n−i+2j−1(−q)−n


=

2n+1∑
i=1

(AVH(4n + 3, i + 1)− AVH(4n + 3, i))
(
z i−2n−1 − z−i+2n+1) ,

where every quantity appearing on the left-hand side is explicitly known.

A similar result holds for VHSASMs of order 4n + 1.



Vertically and Horizontally Perverse ASM



0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 −1 1 0 −1 0 1 −1 1 0
1 −1 1 −1 1 ? 1 −1 1 −1 1
0 1 −1 1 0 −1 0 1 −1 1 0
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0





VHPASMs

Theorem (Fischer-S., 2019)
The number of order 4n + 2 VHPASMs with the leftmost
occurrence of 1 in the second row in i-th column is

i−2∑
k=0

AO(2n, k + 2) (AO(2n, i − k) + AO(2n, i − 3− k)) .

Theorem (Fischer-S., 2019)
The number of order 4n + 2 VHPASMs with the topmost
occurrence of 1 in the second column in the i-th row is

i−2∑
k=0

AO(2n, k + 2) (AO(2n, i − k) + AO(2n, i − 1− k)) .



Thank you for your attention!
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