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1,1,2,7,42,429, 7436, 218348, . . .

The sequence in the title is given by the following 'nice’ formula

114171+ (3n — 2)!
nl(n+1)!---(2n—1)!

or, in product notation

- (3/+1)
l;[ (n+j)!

This formula was conjectured by Mills, Robbins and Rumsey (JCTA,
1983) to count what are called alternating sign matrices (ASMs).



ASMs

An alternating sign matrix (ASM) of size n is an n x n matrix with
entries in the set {0,1, —1} such that

» all row and column sums are equal to 1,
» and the non-zero entries alternate in each row and column.

Clearly all permutation matrices are also ASMs.
For instance, there are 7 ASMs of order 3, these are the six
permutation matrices and the matrix

0 1 0
1 -1 1
0 1 0



ASMs Enumeration

The ASM conjecture was proved by Doron Zeilberger (EJC, 1996)
and independently by Greg Kuperberg (IMRN, 1996).

Zeilberger proved a stronger statement using constant term
identities, while Kuperberg exploited a connection with certain
models from statistical mechanics.




How were they first defined?

Given a matrix A, we let AJ’: denote the matrix that remains when
the ith row and jth column of A are deleted. If we remove more

than one row or column, then the indices corresponding to those

are added to the super- and sub- scripts.

Theorem (Desnanot-Jacobi adjoint matrix theorem)
If A is an n X n matrix, then

det(A) det(A}']) = det(A}) det(A]) — det(AL) det(A7)

or

. B « de det(Al) det(A?)
det(A) = ) d t( ) .

der(alm) < \det(Af) det(a))

This gives us a way of evaluating determinants, in terms of smaller
determinants.




More determinants

Reverend Charles L. Dodgson, better known by his pen name of
Lewis Carroll used Desnanot-Jacobi theorem to give an algorithm
for evaluating determinants in terms of 2 x 2 determinants.

For instance, we get

a1l ai2 a3 1
det a1 a2 a3 | =—

azl a2 a33
a a a a
det (az,z a2,3> det <82,1 az,z)
« det 32 a33 31 832

aip ai ail aip
det ' 3 det ' '
a2 a3 a1 azp



Generalizing the determinant

In the 1980s, Robbins and Rumsey looked at a generalization of the
2 x 2 determinant, which they called the A-determinant.
They defined

arl a2
det = ar1a22 + Aaz1a12.
A \d2,1 a2

Using the previous observations, they generalized it to an n x n
determinant.

........
.........



ASMs and Determinants

Their main result in this direction was

Theorem (Robbins-Rumsey (Adv. Math., 1986))

Let A be an n x n matrix with entries a; j, A, be the set of all
ASMs, Z(B) be the inversion number of B and N'(B) be the
number of —1's in B. Then

det(A) = Y NEE)(1 4 A HNE TT a7,
A BeA, ij=1

This was the first appearance of an ASM in the literature.




What's the inversion number?

An easy way to calculate the inversion number is to take products
of all pairs of entries for which one of them lies to the right and
above the other, and then adding them all up.

0 1 0 00O
0 0 1 00
1 -1 0 01
0 1 -1 10
0 0 1 00

There are seven pairs here whose product is +1 and two pairs
whose product is —1. So the inversion number is 5.




How does one get a formula from this?

First some observations

0 0 10
0 1 00O
1 -1 01
0 1 00

There can be only one 1 in the top row (or, first column). Let A, «
be the number of n x n ASMs with a 1 at the top of top kth
column. Some thought will give us, A, x = Ap nr1-k (Symmetry).

Further, if A, is the number of n x n ASMs, then
An,l = An,n = An—l-




Guessing the formula

This allows one to check small values to get a formula. Mills,
Robbins and Rumsey did exactly that.

They first conjectured

Ank  k(@n—k—1)
Ank+1  (n—k)(n+k—1)

This means that the A, s are uniquely determined by the A, ,_1's
when k > 1 and by A, 1 = Zz;i An_1 k-



Towards a final formula

The above conjecture can be reformulated as

n+k—2\(2n—k —1 - (3/+1)!
Mx:< >( II g

k—1 (n+))!

From here, knowing that A, = A,;1,1 allows one to conjecture the
ASM enumeration formula.




The Many Faces of ASMs

The sequence 1,1,2,7,42 429,7436,218348, ... actually counts
several combinatorial objects.

Theorem (Andrews (Invent. Math., 1979), Zeilberger,
Ayyer-Behrend-Fischer (Adv. Math., 2020))

The following combinatorial objects are counted by the formula

1:[ (3/+1)!
o (n+j)!

> Alternating Sign Matrices,

» Descending Plane Partitions,

» Totally Symmetric Self~-Complementary Plane Partitions,
» Alternating Sign Triangles,

» ...and a couple more.




Missing Bijections

There are other combinatorial objects which are equinumerous with
ASMs, and one of the major open problems in enumerative
combinatorics is to find bijections between such objects.

Recently, Fischer and Konvalinka (PNAS, 2020) have given a
bijective proof of the DPP-ASM part.




Does the story end here?

In the late 1980's Richard Stanley (Lec. Notes. Math., 1986)
suggested the study of various symmetry classes of ASMs; this let
Robbins to conjecture formulas for many of these classes.

It turned out to be as difficult as enumerating ASMs, and this
study was only recently completed in 2016.




Symmetry Classes

| 2

>

Vertically Symmetric ASMs: a; j = aj p+1—j, n odd (Kuperberg
Annals, 2002)

Half-turn Symmetric ASMs: a; ; = apt1—in+1—j, n odd
(Razumov-Stroganov Teoret. Mat. Fiz., 2005), n even
(Kuperberg Annals, 2002)

Diagonally Symmetric ASMs: a; ; = a; ;, no ‘nice’ formula

Quarter-turn Symmetric ASMs: a;; = aj p4+1—j, n odd
(Razumov-Stroganov Teoret. Mat. Fiz., 2005), n even
(Kuperberg Annals, 2002)

Horizontally and vertically Symmetric ASMs:

ajj = ajn+1—j = ant1—ij, n odd (Okada JACO, 2004)
Diagonally and Antidiagonally Symmetric ASMs:

ajj = ajj = an+1—j,n+1—i, n odd (Behrend-Fischer-Konvalinka
Adv. Math., 2017)

All symmetries: a; i = a; ; = aj ,.+1—i, no ‘nice’ formula.
I7J J7I I7n+1 J







Refined Enumeration of ASMs

Some observations are in order.

o o o0 1 0 0 O
o 1 0 -1 0 1 ©
1 -1 0 1 0 -1 1
o o 1 -1 1 0 O
o 1 -1 1 -1 1 O
o o 1 -1 1 0 O
o o o0 1 0 0 O

» There is only one 1 in any boundary row/column of an ASM.

» This suggests the question: how many ASMs with the position
of the 1 fixed at a certain row/column exist?

» These are called refined enumeration of ASMs.



Refined Enumeration of ASMs

The study began with conjectures by Robbins about the number of
ASMs of order n with the position of the 1 in the first row at the
kth column is given by

n+k—2\(2n—-k-1) 3/ +1)!
An,k:< >( HJ

k—1 (n—k)! (n+))!

This was proved by Zeilberger (NYJ Math., 1996).

Several people have worked on the refined enumration of ASMs as
well as their symmetry classes: Behrend (Adv. Math., 2013),
Fischer (JCTA, 2007), Romik-Fischer (Adv. Math., 2009),
Razumov-Stroganov (Teoret. Mat. Fiz., 2004), Ayyer-Romik (Adv.
Math., 2013), Romik-Karlinsky (Adv. Appl. Math., 2010, etc.




Some (ex-) conjectures

Several conjectures on refined enumeration of ASMs existed.

| 2

| 2

Fischer (JCTA, 2009) conjectured a formula for the number of
VSASMs with the position of the 1's in the second row fixed.

Robbins (late 1980s) conjectured formulas for refined
enumeration of QTSASMs.

Duchon (FPSAC, 2008) conjectured a formula for the refined
enumeration of quasi-QTSASMs.

We proved these conjectures — and more — in joint work with
llse Fischer (JCTA, 2021) and in some recent work (in
progress, 2020).



VSASMs

In the case of VSASMs, we can make the following observations:
» They exist for odd order.
» The middle column is always (1, -1,1,...,—1,1)7.

» The second row has exactly two 1's.

o o o0 1 0 0 O
o 1 0 -1 0 1 O
1 -1 0o 1 0 -1 1
o o 1 -1 1 0 O
o 1 -1 1 -1 1 O
o 0o 1 -1 1 0 O
o o o0 1 0 0 O

So we can ask for refined enumeration w.r.t. the position of the 1's
in the second row. T

.........
.........



Fischer's Conjecture

Razumov and Stroganov (Teoret. Mat. Fiz., 2004) has a formula
counting the number of VSASMs with a fixed one in the first

column.
Avc(2n +1,1) 1:[ ak ;: 2k_1;
y "1( e L(2n+ k —2)1(4n — k — 1)!
pa (4n —2)I(k — 1)I(2n — k)!

llse Fischer (JCTA, 2009) had conjectured that the number of
(2n+1) x (2n+ 1) VSASMs, where the first one in the second row
is in the ith column is equal to

(2n+i—2)1(4n—i—1)! (

F (6 —2)!(2) — 1)!
2n—=1(4n — 2)I(i — 1)1(2n — i)! '

L@ 1)~ )l

J




Fischer's Conjecture

Theorem (Fischer-S., 2019)

The number of (2n+ 1) x (2n+ 1) VSASM with a 1 in the i-th
position in it's second row is given by

(2n+i—2)(4n—i—1)! (Hl (6j — 2)1(2) — 1)!)

2n=1(4n — 2)I1(i — 1)!1(2n — i)! (4j —1)!(4j —2)!

=Avc(2n+1,i) +Avc(2n + 1,i + 1).

j=1

A bijective proof of the last relation would be of interest.




Other Symmetry Classes?

» We have formulas for many of the symmetry classes as well as
other type of ASMs.

» In some cases the results are in terms of generating functions.

........
.........



Vertically and Horizontally Symmetric ASMs

-11 -1 1 -1 1 —-11

1




VHSASMs

Theorem (Fischer-S., 2019)

Let Ayn(4n + 3,1i) denote the number of VHSASMs of order
4n + 3, with the first occurrence of a 1 in the second row be in the
i-th column. Then, for all n > 1 the following is satisfied

2n
377 (1= 22) (Z Avc(2n+1, i)z">

i=2

( Z QnJ(Zq _ 1)n+i—2j+1(q _ Z)n—i+2j—1(_q)—n)

1<j<i<n+1
2n+1 ) )
=3 (Avn(4n+3,i+1) — Ayn(dn+3,1)) (2721 — 72ty

i=1

where every quantity appearing on the left-hand side is explicitly known.

A similar result holds for VHSASMSs of order 4n + 1.




Values

(6k — 2)1(2k — 1

Avc(2n+1,i) = o kl;[ 1k — ;'E“k 2;
X’ 1( Jyi+e L(2n+ k —2)I(4n — k — 1)
e (4n — 2)I(k — 1)1(2n — k)

3n(n-1) ﬁ (4j +3)(6j + 6)!

Qni = 2 1(an 1)l 1§ (20 +2j +1)!

- [271(31' —2n—i+2)4p_3(3n—3j+1)
x> . S
= (3)!(n = )3/ +1)sn
(n=j+3)y@n+3j—i—1)2 (n—j+3),(~2n+3j i)
X —
(3n+3j+ 1) (3n—3j+ 1)




Vertically and Horizontally Perverse ASM




VHPASMs

Theorem (Fischer-S., 2019)

The number of order 4n + 2 VHPASMSs with the leftmost
occurrence of 1 in the second row in i-th column is

i—2

> Avc(2n+1,k+2) (Avc(2n +1,i — k) + Ayc(2n + 1,0 — 3 — k).
k=0

Theorem (Fischer-S., 2019)

The number of order 4n + 2 VHPASMSs with the topmost
occurrence of 1 in the second column in the i-th row is

i-2

> Avc(2n+1, k+2) (Ave(2n + 1,0 — k) + Avc(2n+1,i — 1 — k).
k=0




Relation between the refined enumeration numbers

From the previous theorems it follows that
AR (4n42, 1) = ASpp (8042, ) 4+ASup (4042, i—2)—ASyp (4n+2, i—1).

where
> Af.5(4n+2,i) is the row refinement number,

> AG,p(4n+2,i) is the column refinement number.




Off-diagonally and off-antidiagonally symmetric ASMs

» An ASM of order 2n + 1 symmetric w.r.t. reflection along the
diagonal and antidiagonal.
» With all entries 0 along the diagonal and the antidiagonal,

except for the central entry which is (—1)".




Off-diagonally and off-antidiagonally symmetric ASMs

-1 1 -1 1 -1 1 —-11

1




OOSASMs

Theorem (Fischer-S., 2019)

A refined enumeration result similar to the case of VHSASMs holds
for OOSASMs.

From our results we get the following relations
Avh(4n+1,i) = Aco(4n—1,i) + Aoo(4n—1,i — 1),
and
Avn(4n+3,i) = Aoo(4n+1,i) + Aoo(4n+1,i — 1).
Bijective proofs of these relations would be of interest.

Similar results hold for vertically and off-diagonally symmetric
ASMs.



Quarter turn symmetric ASMs

>

>

>

>

ASMs that are invariant under a 90° rotation are called
quarter turn symmetric ASMs (QTSASMs).

As a first observation, we see that these ASMs cannot occur
for order 4n + 2, consider the QTSASM of order 2n where the
entries are given by a; ; (1 </,j <2n). Then we have

2n = Z ajj=4 Z aij

1<ij<2n 1<ij<n
and this implies that 2|n. So for the even case they occur only

for order 4n.

Robbins (late 1980s) conjectured refined enumeration for
QTSASMs of order 4n,4n+ 1 and 4n + 3.

We proved all these conjectures.




Quarter turn symmetric ASMs

Theorem (Fischer-S., 2019)

Let Aqt(n, i) be the number of QTSASMs of order n with the
position of the unique 1 in the first row in the i-th column. Then

4n—1 2 2n
Z Aqt(4n,i) (Z An, iz~ > (Z Ant(2n, l')zi_1> ,
i=1

4n 2 /on+1 '
ZAQT (4n+1,1) (Z A, ,Z > (Z Aut(2n+ 1, i)z’1> ,

i=2 i=1
and

4n+2 n+1 2 2n+1 ]
Z AqTt(4n+3,i) (Z Anti, iz ) (Z Apt(2n+ 1, i)z’_1> 7

i=2 i=1

where all quantities appearing in the right-hand side are known.




Values

-2
n+i—2 2n—/—1 - 3+1
An,i=< >( H !

n—1 n—/

and

(2n —1)12 1:[:l (3j +2)(3j + 1)12

At (20 1) = 2@ = 3)Gn - 1) EECERDIENE

=0

(M —nj+ (G —1)2(n+j—3))(2n—j— V)(n+i—j—1)(2n—i+j—2)!
XZ( U= n—j+ DI =) (n—i+j—1) )




quasi-Quarter turn symmetric ASMs

>

>

As pointed out, there are no even order QTSASMs of order
4n + 2.

However, Duchon introduced a new type of ASM, called
quasi-QTSASMs (qQTSASMs) which follows all the conditions
of an ASM and has quarter turn symmetry for all entries
except the middle 2 x 2 square, which can be either {1,0,0, 1}
or {0,—1,-1,0}.



qQTSASMs

o 0 1 0 0 O 00 0 1 00O
0 1 -1 0 1 O 00 1 0 00O
o 0 1 0 -11 10 0 -1 10
1 -1 0 1 0 O 01 -1 0 01
0o 1. 0 -1 1 O 00 0 1 00O
o 0 0 1 0 O 00 1 0 00O

Duchon (2008) also conjectured refined enumeration for these type
of matrices, which we also prove.




qQTSASMs

Theorem (Fischer-S., 2019)

Let AqqT(n, i) denote the number of order n qQTSASMs with the
unique 1 in the first row in the i-th column,then we have

4n+1 )
Z AqqT(4n +2,i)z' 2

i=2
n n+1
— (Z A(n, i)z"—1> (Z A(n+1, i)z’—l)
i=1 /:12n+1
X <Z Aut(2n+1, i)zi1> ,

i=1

where all the quantities appearing in the right-hand side are known.




Half turn symmetric ASMs

» ASMs that are invariant under a 180° rotation are called half
turn symmetric ASMs (HTSASMs).

» They exist for both odd and even order.

» The refined enumeration of HTSASMs w.r.t. the position of
the 1 in the first row was already done by Razumov &
Stroganov (Teoret. Mat. Fiz., 2006).

» One can also ask for doubly refined enumeration of HTSASMs
w.r.t. the position of the 1's in the first row and first column.

Theorem (S, 2020)

A doubly refined generating function for HTSASMs exist where the
quantities on one side are explicitly known.



1/N phenomenon of QTSASMs

The central entry of a QTSASM of order 4n + 1 is always 1.

ali ce d1,2n a1 2n+1 a1.2n+2 ce al,4n+1
an+1,1 *° d2n+1.2n * an+12n+2 *°° A2n+1,4n+1
d4n+1,1 °°°  d4p4+12n  94n+1.2n+1  @4n+12n+2  Cc° d4n+1,4n+1

» This follows from
4 (Z1gi,j§2n aij+ 2 1<j<on 32n+1,j> +x=4n+1.

» Similarly, the central entry of a QTSASM of order 4n+ 3 is
always —1.

» Because of the symmetry, all adjacent entries of this central
entry are the same.



1/N phenomenon of ASMs

» The proportion of QTSASMs of appropriate order with fixed

entries adjacent to the central entry was conjectured by

1
Stroganov to be nt :
n

» This phenomenon was already observed in the case of
qQTSASMs by Aval and Duchon (EJC, 2010), in case of
HTSASMs by Razumov and Stroganov (Teoret. Mat. Fiz.,
2006), and in case of odd order DADSASMs by Behrend,
Fischer and Konvalinka (Adv. Math., 2017).

» This is called 1/N phenomenon in ASMs.

» Recently, we proved Stroganov’s conjecture for QTSASMs.



QTSASMs

Theorem (S, 2020)

Let the number of QTSASMs of order n with the entries adjacent

to its central entry being x's be A&).(n) Then the following
equations are true

AD(4n+1)  ni1

A( D@n+1) 0

)

and .
Ag%(4n +3) n+1

AD(@n43)  n




Contributions

» We proved singly refined enumeration results for almost all
symmetry classes of ASMs.

» This proved conjectures of Fischer, Robbins and Duchon.

» We proved singly refined enumeration results for related classes
of ASMs like OOSASMs and Vertically and off-diagonally
symmetric ASMs.

» This actually completes the singly refined enumeration of
ASMs.

» We proved doubly refined enumeration results for HTSASMs.

» We proved conjectures of Stroganov about the 1/N
phenomenon of QTSASMs.




Thank you for your attention!




Bijection between ASMs and Six Vertex Model

Kuperberg's proof of the ASM conjecture was by exploiting a
bijection between the ASMs and a model in statistical physics,
called the six-vertex model.
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Figure: Six Vertex Model with Domain Wall Boundary Condition. ==



Bijection between ASMs and Six Vertex Model

A state of a corresponding six-vertex model is an orientation on the
edges of this graph, such that both the in-degree and the
out-degree of each vertex with degree 4 is 2.
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Figure: Six Vertex Model with Domain Wall Boundary Condition.



The Bijection

If we associate to each of the degree 4 vertex in a six-vertex state
with a number, as given in the figure below

ST T T T

1

Figure: The corresponding states of the six-vertex model and the entries
of an ASM.

then we obtain a matrix with entries in the set {0,1, —1}.

Such a matrix will be an ASM, and we get a bijection between
ASMs and states of the six-vertex model.



Example
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Figure: Six Vertex Model with
Domain Wall Boundary Condition.




Weighted Enumeration

» \We assign to each vertex v, a weight w(v).
» Weight of a state C is W(C) =[], w(v).
> Generating function or the partition function Z, =" - W(C).

» Specializing the parameters in Z,,, we get enumeration results.




Our Weights

-1

. . : - _ 1
q is a parameter, which we will specialize later, x = — = x~* and

o(x) =x—X. *

b

a(q?) a(q?) a(qu) a(qu) a(qu) a(qu)

Figure: The weights of the vertices of an ASM with spectral parameter v.

We normalize further by (g?) so that we have all entries 1 and —1
to have weight 1.



How are weights assigned?

X9

\J
A
\J
A
A

T4

\/
Y
\/
\/
A

Y1 Y2 Y3 Ya

A vertex lying at the intersection of a vertical line with parameter

y;j and a horizontal line with parameter x; is assigned the label .
Yj




Another type of ASM

In order to study VSASMs we need what are called U-turn domain
boundary wall conditions.

The set of VASAMs is a subset of what are called U-turn ASMs or
ASMs with U-turn boundary (UASMs).

We will explain this connection shortly.

vvvvvvvvv
.........



UASMs

An U-turn ASM is an 2n x n array which satisfies the usual
properties of ASMs if one looks at it vertically.

However, if one looks at it horizontally then the 1's and —1's
alternate if we start along an odd numbered row from left to right
and then continue along the next even numbered row from right to

left.
A
0 1 T1 —p» <a—
> - -
) 71> YA 3 b
0 ]. x2 — -
> - -
0 0> T3 3 b
Y1 Y2

Figure: An U-turn ASM with the corresponding six-vertex state.



New weights

As can be seen from the figure, we add an additional parameter on
the U-turns.

This gives rise to two new type of vertices whose corresponding
weights are given below.

o(bu) o(bu)

Figure: Weights of the new vertices.



Partition Function

Tsuchiya was the first to consider a U-turn domain wall boundary
condition, and gave a partition function for them.

a(q*)" [Ti(o(by)o(a*x?)) I (o' (xiyj) o’ (xiy;))
Hi<j(0(7ixj)0()’iyj)) HIQ(U(TXJ')O-(YU/_[))
x det My(n; x,y), (1)

Zy(mx,y) =

where o/(x) = o(gx)o(gx) and My is an n x n matrix defined as

1 1
U(nyx7y)’zl O-/(Xiyj) UI(XI'yJ')




Some observations

» VSASMs occur only for odd order.

O O OO oo
OO, O R~ O
O B=) = OOO
|
_
O R = OOO
OO O RF=HFHO
O OO O+ OO




Some observations

» VSASMs occur only for odd order.

» We need only the first n + 1 columns of the VSASM to know
the full matrix.

» The middle column is an alternating row with 1 and -1.

o 0o o0 1 0 0 O
o 1 0 -1 0 1 ©0
1 -1 0 1 0 -1 1
o o 1 -1 1 0 O
o0 1 -1 1 -1 1 O
o o 1 -1 1 0 O
o o o0 1 0 0 O




Some observations

v

VSASMs occur only for odd order.

We need only the first n + 1 columns of the VSASM to know
the full matrix.

v

v

The middle column is an alternating row with 1 and -1.

» So, n columns are sufficient to know the whole matrix.

v

Moreover, the first and last rows are always the same.



Transformation

We can transform a VSASM into an USASM in two steps:
» Delete the last row.

» Connect pairwise the alternating edges on the right most
column of the 2n x n matrix.

Figure: Transformation of a VSASM into an UASM.

Notice that all U-turns are downward pointing.



Proof of Fischer's Conjecture

Theorem (Fischer-S., 2019)

The number of (2n+ 1) x (2n+ 1) VSASM with a 1 in the i-th
position in it's second row is given by

(2n+i—2)(4n— i —1)! ('i—[l(6j2)!(2j1)!). )

27 1(4n —2)I(i = 1)I(2n — i) | 11 (4] — 1)!(4) — 2)!




How to transfer to the partition function?

We will specialize
(x1,...yxn) = (x,1,...,1) and (y1,...,¥n) =(1,...,1),
as well as
b=qg and g+g=1, (3)
in the partition function.

When b= g and x; = 1 for i > 1 implies that the configurations
that have at least one up-pointing U-turn in positions 2,3,...,n
have weight

o(bi) =o(qgxg)=0

and can therefore be omitted.




Proof

For the remaining configurations we can distinguish between the
cases where the topmost U-turn is down-pointing (Case 1) or not
(Case 2).

Let us denote the numbers that we are interested in by

Av(2n +1, ).

Case 1. If the topmost U-turn is down-pointing, then the top row
is forced and all vertex configurations are of type +

In the second row, there is precisely one configuration of type *3*
say in position i counted from the left, and the configurations right

of it are all of type + while the configurations left of it are of

type +



Case 1

Such configurations correspond to (2n+ 1) x (2n+ 1) VSASMs
that have the first 1 in the second row in the i-th column.

The top U-turn contributes o(g?x), while all other n — 1 U-turns
contribute o(g?).

In total such a configuration has the following weight

()" (58 ety

This case contributes the following term towards the partition
function
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Case 2

Case 2. If the topmost U-turn is up-pointing, there is a unique
occurrence of *#* in the top row, say in position i. There is either

one occurrence of *3* in the second row, say in position j with
1 <j < i, or no such occurrence.

In the first case, the weight is

() ()

We notice that for fixed /i, these configurations give rise to all the
configurations counted by Ay(2n + 1, ).

So, this case contributes the following term towards the partition
function
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Case 2. contd.

In the second case the weight is
() () o

We notice that such configurations are essentially the same as the
ones counted by Ay(2n + 1, i) with just the first U-turn reversed,so
this contributes the following term towards the partition function
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Partition function relation

Combining the three cases that we got, we have
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Partition function relation

We replace
_ o(9%)
o(gx)

and eliminate x.

A tedious but straight forward computation shows that
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Final calculations

Using results by Okada with some simplifications we would also get
the following in our case.

1+z
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X Span(n—1,n—1,...,0,0;x%,1,...,1)
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Here
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Final Calculations contd.

Again using results of Razumov and Stroganov with lots of
simplifications we shall arrive at
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for i > 2.
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Final Step

All that is now left to be done is to combine all of the previous
equations to get the following relation

Av(2n+1,1) = Ao(2n, i) + Ao(2n, i + 1). (8)

Putting in the values of Ag(2n, ) will now give us the theorem
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Descending Plane Partitions

A descending plane partition is an array of positive integers
(dij)i<i<ri<j<n+i-1 of the form

di1 dip di a1,
dho dr3 a2 2r4+1

dr ro dr,)\r+r—1

)

such that
> all row entries are weakly decreasing,
» all column entries are strictly decreasing,
» the number of entries in each row is strictly less than the first
entry in the same row and is at least as large as the first entry
in the following row.

It is known that the number of descending plane partitions with
entries at most n are equinumerous with order n ASMs.



Plane Partitions
A plane partition in an a X b x ¢ box is a subset
PP C{1,2,---,a} x {1,2,--- ,b} x {1,2,--- ,c}

with (7', ', k') € PP if (i,j, k) € PP and (i',j', k') < (i.j, k).




Totally Symmetric Self-Complementary Plane Partitions

If a plane partition has all the symmetries (that is, (i, /, k) € PP if
and only if all six permutations of (/,/, k) are also in PP)and is its
own complement (that is, if (/,/, k) € PP then
(2n+1—1i,2n+1—j,2n+1— k) ¢ PP), then it is called totally
symmetric self-complementary plane partitions (TSSCPP).

The class of TSSCPPs inside a 2n x 2n x 2n box are equinumerous
with n x n ASMs.




Alternating Sign Triangles (ASTs)

An AST of size n is a triangular array

a1 412 ... d12p-2 d12n-1
a2 ... a2p-2

dn,n

such that
» the entries are either 1, —1 or 0,
» along the columns and rows the non-zero entries alternate,

» the first non-zero entry from the top is a 1 and the rowsums
are equal to 1.

........
.........



Example

Following is an AST of order 3.

ASTs of order n are equinumerous with ASMs of order n.

There are other combinatorial objects which are equinumerous with
ASMs, and one of the major open problems in enumerative
combinatorics is to find bijections between such objects.

Recently, Fischer and Konvalinka have given a bijective proof of the
DPP-ASM part.




Thank you for your attention!




