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Abstract. For a positive integer n, if σ(n) denotes the sum of the positive divisors of n, then n is called a
deficient perfect number if σ(n) = 2n − d for some positive divisor d of n. In this paper, we prove that, if 5

does not divide an odd number with four distinct prime divisors, then there is only one such deficient perfect

number. This extends previous work by various authors on characterizing odd deficient perfect numbers with a
fixed number of distinct prime factors.

Disclaimer

This paper was finished in late 2018 and submitted to a journal which rejected it in May 2019 with a referee
report which suggested to make the paper much shorter than it currently is. The referee made two suggestions
on how to do this, one of which was incorrect. The author did not pursue this further and left the paper as it
was. In August 2019, Sun and He [6] proved a stronger result than the one proved in this paper, using some
similar techniques. They however do not cite the earlier work of the author and Dutta [1], which would have
made their paper a bit shorter. This paper is available in the author’s website and is not intended for publication
as the main theorem is super-seeded by the work of Sun and He [6], as already pointed out.

1. Introduction

For a positive integer n, the function σ(n) denotes the sum of the distinct positive prime divisors of n. A
natural number n is called a perfect number if σ(n) = 2n. These type of numbers have been studied since
antiquity and several generalizations of these numbers have appeared over the years (for instance, see [3] and the
references therein for some of them).

Let d be a proper divisor of n. We call n, a near perfect number with redundant divisor d if σ(n) = 2n + d;
and a deficient perfect number with deficient divisor d if σ(n) = 2n − d. If d = 1, then such a deficient perfect
number is called an almost perfect number. Several results have been proved about these classes of numbers: for
instance, Kishore [2] proved that if n is an odd almost perfect number then the number of distinct prime factors
of n is at least 6, Pollack and Shevelev [4], Ren and Chen [5] found all near perfect numbers with two distinct
prime factors; Tang, Ren and Li [8] showed that no odd near perfect number exists with three distinct prime
factors and determined all deficient perfect numbers with two distinct prime factors. In a similar vein, Tang and
Feng [7] showed that no odd deficient perfect number exists with three distinct prime factors; Tang, Ma and Feng
[9] showed that there exists only one odd near perfect number with four distinct prime divisors.

The smallest known odd deficient perfect number with four distinct prime factors is 9018009 = 32.72.112.132,
and it is the only such number until 2.1012. Recently, Dutta and Saikia [1] proved that any odd deficient perfect
number with four distinct prime factors should have 3 as it’s smallest prime factor, and either 5 or 7 as its second
smallest prime factor. In this paper, we extend the work of Dutta and Saikia [1] and prove the following result.

Theorem 1.1. If n is an odd deficient perfect number with four distinct prime factors, such that 5 does not
divide n, then there is only one such n, which is 9018009 = 32.72.112.132.

We can rephrase the above result in the following way, keeping in mind the result proved in [1].

Theorem 1.2. If n is an odd deficient perfect number with four distinct prime factors p1, p2, p3 and p4 such that
n = pa1

1 .p
a2
2 .p

a3
3 .p

a4
4 with p1 < p2 < p3 < p4 and a1, a2, a3, a4 ≥ 1, and if p2 ≥ 7 and p1 ≥ 3, then there is only

one such n which is 9018009 = 32.72.112.132.

This paper is organized as follows: in Section 2 we state all the important notations that will be necessary for
this paper; in Section 3 we prove Theorem 1.2 and we end the paper with some remarks in Section 4.
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2. Basic Setup

Before, we prove our results, we note the following result from Tang and Feng [7].

Lemma 2.1 (Lemma 2.1, [7]). Let n =
∏k

i=1 p
ai
i be the canonical prime factorization of n. If n is an odd

deficient perfect number, then all the ai’s are even for all i.

Let us fix a few notations. Throughout this paper, unless otherwise mentioned we take n = pa1
1 .p

a2
2 .p

a3
3 .p

a4
4

with p1 < p2 < p3 < p4 distinct odd primes and ai’s to be natural numbers. In light of Lemma 2.1 all the ai’s
are even. If a is any integer relatively prime to m such that k is the smallest positive integer for which ak ≡ 1
(mod m) then, we say that k is the order of a modulo m and denote it by ordm(a). We also define the following
function which we shall use very often in this paper

f(a1, a2, a3, a4) =

(
1− 1

pa1+1
1

)(
1− 1

pa2+1
2

)(
1− 1

pa3+1
3

)(
1− 1

pa4+1
4

)
.

Assuming that n is an odd deficient perfect number with pb11 .p
b2
2 .p

b3
3 .p

b4
4 as the deficient divisor, we have

(2.1) σ(pa1
1 .p

a2
2 .p

a3
3 .p

a4
4 ) = 2.pa1

1 .p
a2
2 .p

a3
3 .p

a4
4 − p

b1
1 .p

b2
2 .p

b3
3 .p

b4
4 ,

where bi ≤ ai. Also write D = pa1−b1
1 .pa2−b2

2 .pa3−b3
3 .pa4−b4

4 . Then we have

(2.2) 2 =
σ(n)

n
+
d

n
=
σ(n)

n
+

1

D
.

An inequality which we will use without commentary is the following

σ(n)

n
<

p1p2p3p4
(p1 − 1)(p2 − 1)(p3 − 1)(p4 − 1)

.

We also formally state the result from Dutta and Saikia [1].

Theorem 2.2 (Dutta-Saikia, [1]). If n is an odd deficient perfect number with four distinct prime factors p1, p2, p3
and p4 such that n = pa1

1 .p
a2
2 .p

a3
3 .p

a4
4 with p1 < p2 < p3 < p4 and a1, a2, a3, a4 ≥ 1, then p1 = 3 and p2 ≤ 7.

In light of Theorem 2.2, we need to only consider the cases p1 = 3, p2 = 7 to prove Theorem 1.2. So, for the
remainder of the paper, we assume p1 = 3 and p2 = 7.

It so happens that, sometimes in several cases that we will analyze in the subsequent sections, more than one
proof can be given. We will use the convention of using the methods used in the preceding results to prove any
subsequent result if those methods can be used successfully. We will not mention other ways to prove a particular
case, other than the one we present in this paper. It will also become clear to the reader that most of the proofs
are similar, so we shall omit some of them for the sake of brevity. Sometimes, the arguments if spelled out exactly
would be too tedious, so we write the details that needs to be verified1.

3. Proof of Theorem 1.2

Lemma 3.1. If n = 3a1 .7a2 .pa3
3 .p

a4
4 in Theorem 1.2 with p3 ≥ 37, then there is no odd deficient perfect number.

Proof. Noting the elementary inequality
p

p− 1
>

p+ l

p+ l − 1
for positive integers p and l we see that D ≥ 7 cannot

occur in this case, if D ≥ 7 cannot occur when p3 = 37. Indeed,

2 =
σ(n)

n
+
d

n
<

3.7.37.41

2.6.36.40
+

1

7
< 2,

which is not possible. So, for all these cases we have D = 3.
From equation (2.1) we have

(3.1) σ(3a1 .7a2 .pa3
3 .p

a4
4 ) = 5.3a1−1.7a2 .pa3

3 .p
a4
4 .

Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

pa3+1
3

)(
1− 1

pa4+1
4

)
.

We also introduce the following function

g(a1, a2, a3, a4) =
20.(p3 − 1).(p4 − 1)

21.p3.p4
.

1All the numerical calculations have been done on Mathematica 11.1 with 16 digits precision, but we have truncated the results
to six decimal digits as it is sufficient for our purposes.
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From equation (3.1), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
In this case, it is clear that

f(a1, a2, a3, a4) ≥
(

1− 1

33

)(
1− 1

73

)(
1− 1

373

)(
1− 1

413

)
= 0.960123 · · · ,

and

g(a1, a2, a3, a4) ≤ 20

21
= 0.952381 · · · .

Clearly, these two inequalities are not compatible with each. So, we have p3 ≤ 31.
�

Remark 3.2. In this paper, we want to check inequalities of the form f(a1, a2, a3, a4) ≥ Q and g(a1, a2, a3, a4) ≤
R and then compare the values of Q and R, so we need to only verify for the smallest possible values of pi’s
for f(a1, a2, a3, a4) and the largest possible values of pi’s for g(a1, a2, a3, a4). This was done in the case of
f(a1, a2, a3, a4) in the proof Lemma 3.1 above and will be done in the case of g(a1, a2, a3, a4) in the proof of
Lemma 3.3. We will not explicitly mention this in the verifications to follow from now on.

Lemma 3.3. If n = 3a1 .7a2 .pa3
3 .p

a4
4 in Theorem 1.2 with 19 ≤ p3 ≤ 31, then there is no odd deficient perfect

number.

Proof. If D ≥ 15 here, we get a contradiction like the previous proof. So, the possible cases for D are 3, 7 and 9.
Case 1. D = 3.
The proof is similar to the proof of Lemma 3.1, so we omit the details here.
Case 2. D = 7.
In this case, we get the following

(3.2) σ(3a1 .7a2 .pa3
3 .p

a4
4 ) = 13.3a1 .7a2−1.pa3

3 .p
a4
4 .

We use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

pa3+1
3

)(
1− 1

pa4+1
4

)
.

We also introduce the following function

g(a1, a2, a3, a4) =
52.(p3 − 1).(p4 − 1)

49.p3.p4
.

From equation (3.2), it is clear that, in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a2 = 2, then we have from equation (3.2) we have

(3.3) 19.σ(3a1 .pa3
3 .p

a4
4 ) = 13.3a1−1.7.pa3

3 .p
a4
4 .

If p3 ≥ 23 then this is not possible. If p3 = 19, then we have from equation (3.3)

(3.4) σ(3a1 .19a3 .pa4
4 ) = 13.3a1−1.7.19a3−1.pa4

4 .

In this case, we have 23 ≤ p4 ≤ 181, otherwise we have

2 =
σ(n)

n
+

1

D
<

3.7.19.191

2.6.18.190
+

1

7
< 2,

which is impossible.
We now note that ord19(3) = 18 and ord19(p4) is even if p4 is not one of the elements of {23, 43, 47, 61, 73, 83, 101, 131, 137, 139, 149, 157, 163}.

So, we can exclude all the other cases as then 19 will not divide the left hand side of equation (3.4). Again, we
note that ord7(3) = ord7(19) = 6 and ord7(p4) is even for all elements of the above set except for 23, 43, 137, 149
and 163. So, we can also exclude the rest of the cases. We also have ordp4

(3) and ordp4
(19) is even if p4 equals

43, 137 and 163, so we can exclude these cases as well.
If p4 = 23, then using an order argument, we shall reach the conclusion that 3a1−1 = σ(19a3), 23a4 .13 = σ(3a1)

and 7.19a3−1 = σ(23a4), solving this for a3 then gives us 19a3−1 < 1 which is not possible.
If p4 = 149, then using an order argument we reach the conclusion that 13 = σ(3a1) which implies a1 = 2,

and then we have 3.149a4 = σ(19a3) and 7.19a3−1 = σ(149a4). Solving this for a3 would again imply 19a3−1 < 1
which is not possible.

Hence, a2 ≥ 4.
If a1 = 2, from equation (3.2) we get
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(3.5) σ(7a2 .pa3
3 .p

a4
4 ) = 32.7a2−1.pa3

3 .p
a4
4 .

If p4 ≥ 29, we have

2 =
σ(n)

n
+

1

D
<
σ(32).7.19.29

32.6.18.28
+

1

7
< 2,

which is impossible. So, p3 = 19, p4 = 23 and hence equation (3.5) becomes

(3.6) σ(7a2 .19a3 .23a4) = 327a2−1.19a3 .23a4 .

Using a similar order argument, we can also conclude from here that σ(19a3) is either 1, 3 or 32, all of which are
not possible. Hence, a1 ≥ 4.

If a1 = 4, then 11 divides both sides of equation (3.2) which is not possible. Hence, a1 ≥ 6.
Let a1 ≥ 6 and a2 ≥ 4, then it is clear that

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

193

)(
1− 1

233

)
= 0.999255 · · · ,

and

g(a1, a2, a3, a4) ≤ 52.30.36

49.31.37
= 0.999235 · · · .

Both these inequalities cannot hold at the same time, so this case cannot occur. (We notice that if p3 = 31, the
largest possible in this Lemma, then p4 = 37, and hence the choices for p3 and p4 in g(a1, a2, a3, a4) is sufficient
for our verification.)

Case 3. D = 9. In this case, we get the following

(3.7) σ(3a1 .7a2 .pa3
3 .p

a4
4 ) = 17.3a1−2.7a2 .pa3

3 .p
a4
4 .

Let us introduce the function

g(a1, a2, a3, a4) =
17.22.(p3 − 1)(p4 − 1)

32.7.p3.p4
.

From equation (3.7), it is clear that

f(a1, a2, a3, a4) = g(a1, a2, a3, a4).

Subcase 3.1. p3 = 19.
If p4 ≥ 47, then we have

2 =
σ(n)

n
+

1

D
<

3.7.19.47

2.6.18.46
+

1

9
< 2,

which is impossible. So, p4 ≤ 43. Now, equation (3.7) in this case is

(3.8) σ(3a1 .7a2 .19a3 .pa4
4 ) = 17.3a1−2.7a2 .19a3 .pa4

4 .

We now note that ord17(3) = ord17(7) = 16, ord17(19) = 8 and ord17(p4) are all even for the possible values of
p4, this means that 17 does not divide the left hand side of equation (3.8), which is a contradiction. Hence, this
subcase cannot occur.
Subcase 3.2. p3 = 23.

If p4 ≥ 37, then we have

2 =
σ(n)

n
+

1

D
<

3.7.23.37

2.6.22.36
+

1

9
< 2,

which is impossible. So, p4 ≤ 31. Now, equation (3.7) in this case is

(3.9) σ(3a1 .7a2 .23a3 .pa4
4 ) = 17.3a1−2.7a2 .23a3 .pa4

4 .

We now note that ord17(3) = ord17(7) = ord17(23) = 16 and ord17(p4) are all even for the possible values of p4,
this means that 17 does not divide the left hand side of equation (3.9), which is a contradiction. Hence, this
subcase cannot occur.
Subcase 3.3. 29 ≤ p3 ≤ 31.

We have

2 =
σ(n)

n
+
d

n
<

3.7.29.31

2.6.28.30
+

1

9
< 2,

which is not possible. Hence, this subcase is also not possible.
Combining all the above cases and subcases, we can conclude the validity of the lemma.



DEFICIENT PERFECT NUMBERS 5

�

Lemma 3.4. If n = 3a1 .7a2 .17a3 .pa4
4 in Theorem 1.2, then there is no odd deficient perfect number.

Proof. If D ≥ 27, then we have

2 =
σ(n)

n
+
d

n
<

3.7.17.19

2.6.16.18
+

1

27
< 2,

which is not possible. So, D ≤ 26, hence D ∈ {3, 7, 9, 17, 19, 21, 23}.
Case 1. D = 3.
The proof is similar to the proof of Lemma 3.1, so we will skip the details here.
Case 2. D = 7.
In this case, we have

(3.10) σ(3a1 .7a2 .17a3 .pa4
4 ) = 13.3a1 .7a2−1.17a3 .pa4

4 .

Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

17a3+1

)(
1− 1

pa4+1
4

)
.

We also introduce the following function

g(a1, a2, a3, a4) =
13.26.(p4 − 1)

72.17.p4
.

From equation (3.10), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a2 = 2 from equation (3.10) we get

19.σ(3a1 .17a3 .pa4
4 ) = 13.3a1−1.7.17a3 .pa4

4 .

Clearly, 19 does not divide the right hand side of this equation, unless p4 = 19. If p4 = 19 then we have

(3.11) σ(3a1 .17a3 .19a4) = 13.3a1−1.7.17a3 .19a4−1.

We note that ord7(3) = ord7(17) = ord7(19) = 6, so 7 does not divide the left hand side of equation (3.11), and
hence a2 ≥ 4.

If a1 = 2, from equation (3.10) we get

σ(7a2 .17a3 .pa4
4 ) = 3.7a2 .17a3 .pa4

4 .

Here, if p4 ≥ 29, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.17.29

32.6.16.28
+

1

7
< 2,

which is not possible. So, the possible cases for p4 are 19 and 23. If p4 = 19, then we note that ord7(17) =
ord7(19) = 6, so 7 does not divide the left hand side of the above equation. If p4 = 23, then we note that
ord17(7) = ord17(23) = 16 and hence 17 does not divide the left hand side of the above equation. Thus, a1 ≥ 4.

If a1 = 4, from equation (3.10) we get

112σ(7a2 .17a3 .pa4
4 ) = 13.33.7a2 .17a3 .pa4

4 .

Clearly, 11 does not divide the right hand side of this equation. So, a1 ≥ 6.
If a1 ≥ 6, a2 ≥ 4, we have clearly,

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

173

)(
1− 1

193

)
= 0.999134 · · · ,

and

g(a1, a2, a3, a4) ≤ 13.26

72.17
= 0.9988 · · · .

Both of these inequalities cannot be true at the same time. So, this case cannot occur.
Case 3. D = 9.
If p4 ≥ 67, then we have

2 =
σ(n)

n
+
d

n
<

3.7.17.67

2.6.16.66
+

1

9
< 2,

which is not possible. So, p4 ∈ {19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61}.
We have here

σ(3a17a217a3pa4
4 ) = 3a1−2.7a2 .17a3+1.pa4

4 .
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This means, that 17 divides both sides of the above equation, however ord17(3) = ord17(7) = 16 and ord17(p4)
are all even for all choices of p4 in the admissible cases; so 17 does not divide the left hand side of this equation,
and hence this case is not possible.

Case 4. D = 17.
If p4 ≥ 29, then we have

2 =
σ(n)

n
+
d

n
<

3.7.17.29

2.6.16.28
+

1

17
< 2,

which is not possible. So, p4 = 19 or p4 = 23.
If p4 = 19, then, we have

σ(3a17a217a319a4) = 33.3a17a217a3−119a4 .

We note that ord7(3) = ord7(17) = ord7(19) = 6 are all even, so 7 cannot divide the left hand side of the above
equation, and hence this is not possible.

If p4 = 23, then, we have
σ(3a17a217a323a4) = 33.3a17a217a3−123a4 .

We note that ord17(3) = ord17(23) = ord17(7) = 16 are all even, so 17 cannot divide the left hand side of the
above equation, and hence this is not possible.
Case 5. D = 19. In this case, we must have p4 = 19. Then, we have

σ(3a17a217a319a4) = 37.3a17a217a319a4−1.

We note that ord7(3) = ord7(17) = ord7(19) = 6 are all even, so 7 cannot divide the left hand side of the above
equation, and hence this case is not possible.
Case 6. D = 21.

If p4 ≥ 23, then we have

2 =
σ(n)

n
+
d

n
<

3.7.17.23

2.6.16.22
+

1

21
< 2,

which is not possible. So, p4 = 19. Then, we have

σ(3a17a217a319a4) = 41.3a1−17a2−117a319a4 .

We note that ord7(3) = ord7(17) = ord7(19) = 6 are all even, so 7 cannot divide the left hand side of the above
equation, and hence this case is not possible.
Case 7. D = 23.

In this case, we must have p4 = 23. Then, we have

2 =
σ(n)

n
+
d

n
<

3.7.17.23

2.6.16.22
+

1

23
< 2,

which is not possible.
Combining all the above cases, proves the lemma.

�

Lemma 3.5. If n = 3a1 .7a2 .13a3 .pa4
4 in Theorem 1.2 with p4 ≥ 31, then there is no odd deficient perfect number.

Proof. Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

13a3+1

)(
1− 1

pa4+1
4

)
.

In this case, if D ≥ 25 then we have

2 =
σ(n)

n
+
d

n
<

3.7.13.31

2.6.12.30
+

1

25
< 2,

which is not possible. Hence, the choices of D are 3, 7, 9, 13, 21.
Case 1. D = 3.
We have here the equation

(3.12) σ(3a1 .7a2 .13a3 .pa4
4 ) = 5.3a1−1.7a2 .13a3 .pa4

4 .

Let us define the function

g(a1, a2, a3, a4) =
5.22.12.(p4 − 1)

3.7.13.p4
.

From equation (3.12), it is clear that f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
We have

f(a1, a2, a3, a4) ≥
(

1− 1

33

)(
1− 1

73

)(
1− 1

133

)(
1− 1

313

)
= 0.959 · · · ,
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and

g(a1, a2, a3, a4) ≤ 5.22.12

3.7.13
= 0.879121 · · · .

Clearly, both these inequalities are not compatible with each other. Hence, this case is not possible.
Case 2. D = 7.
We have here the equation

(3.13) σ(3a1 .7a2 .13a3 .pa4
4 ) = 3a1 .7a2−1.13a3+1.pa4

4 .

Let us define the function

g(a1, a2, a3, a4) =
24.3.(p4 − 1)

72.p4
.

From equation (3.13), it is clear that f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a1 = 2, then equation (3.13) becomes

(3.14) σ(7a2 .13a3 .pa4
4 ) = 32.7a2−1.13a3 .pa4

4 .

We note that ord7(13) = 2 and ord13(7) = 12; this gives us the relations σ(7a2 .13a3) = 9.pa4
4 and σ(pa4

4 ) =
7a2−1.13a3 . After simplification we get,

(3.15) 7a2−1.13a3(−11p4 + 648) = p4(7a2+1 + 13a3+1 − 1) + 648.

If p4 ≥ 59, then the right hand side of equation (3.15) is always positive, while the left hand side is always
negative. Hence, this is a contradiction, so in this case 31 ≤ p4 ≤ 53. Now, we note that ord13(31) = ord13(47) =
4, ord13(37) = ord13(41) = 12 and ord13(43) = 6, so p4 cannot be equal to these values, otherwise 13 will not
divide the left hand side of equation (3.14). If p4 = 53, then equation (3.15) becomes

5.7a2−1.13a3+1 − 7a2+1.53− 5.7.17 = 13a3+1.53.

Clearly, 7 divides the left hand side of this equation, but not the right hand side. Hence, p4 6= 53. So, in
conclusion, we have a1 ≥ 4.

If a1 ≥ 4, we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

133

)(
1− 1

313

)
= 0.992496 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.3

72
= 0.979592 · · · .

Clearly, both these inequalities are not compatible with each other. So, this case cannot occur.
Case 3. D = 9.
We have here the equation

(3.16) σ(3a1 .7a2 .13a3 .pa4
4 ) = 17.3a1−2.7a2 .13a3 .pa4

4 .

Let us define the function

g(a1, a2, a3, a4) =
17.24.(p4 − 1)

3.7.13.p4
.

From equation (3.16), it is clear that f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a2 = 2, then we get that 19 divides both sides of equation (3.16), which is not possible. So, a2 ≥ 4. If

a1 = 4, then 11 divides both sides of equation (3.16), which is not possible. If a1 = 2, then we have from equation
(3.16)

(3.17) σ(7a2 .13a3 .pa4
4 ) = 17.7a2 .13a3−1.pa4

4 .

We have ord17(7) = 16, ord17(13) = 4, ord7(13) = 2 and ord13(7) = 12; so we must have pa4
4 = σ(7a2 .13a3) and

17.7a2 .13a3−1 = σ(pa4
4 ). From these two relations we get

7a2 .13a3−1(−41p4 + 1224) = p4(7a2+1 + 13a3+1 − 1) + 84.

Since, p4 ≥ 31 and a2 ≥ 4, a3 ≥ 2, so the right hand side of the above equation is always positive, while the left
hand side is always negative. Hence, this is a contradiction, so a1 ≥ 6.
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If a1 ≥ 6 and a2 ≥ 4, we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

133

)(
1− 1

313

)
= 0.998995 · · · ,

and

g(a1, a2, a3, a4) ≤ 17.24

3.7.13
= 0.996337 · · · .

Clearly, both these inequalities are not compatible with each other. Hence, this case cannot occur.
Case 4. D = 13.
If p4 ≥ 71, then we have

2 =
σ(n)

n
+
d

n
<

3.7.13.71

2.6.12.70
+

1

13
< 2,

which is not possible. So, 31 ≤ p4 ≤ 67.
In this case, we have the equation

σ(3a1 .7a2 .13a3 .pa4
4 ) = 52.3a1 .7a2 .13a3−1.pa4

4 .

We note that ord5(3) = ord5(7) = ord5(13) = 4, so 5 divides only σ(pa4
4 ). But if p4 ∈ {37, 43, 47, 53, 59, 67}, then

ord5(p4) is even. So, the only possibilities are p4 ∈ {31, 41, 61}.
We note that ord7(3) = 6, ord7(13) = 2, ord7(31) = 6 and ord7(61) = 6, so p4 6= 31, 61.
We note that, ord41(3) = 8, ord41(7) = ord41(13) = 40, so p4 6= 41.
Thus, this case cannot occur.
Case 5. D = 21.
If p4 ≥ 37, then we have

2 =
σ(n)

n
+
d

n
<

3.7.13.37

2.6.12.36
+

1

21
< 2,

which is not possible. So, p4 = 31.
In this case, we have the equation

σ(3a1 .7a2 .13a3 .31a4) = 41.3a1−1.7a2−1.13a3 .31a4 .

We note that ord7(3) = 6, ord7(13) = 2 and ord7(31) = 6, so 7 divides the right hand side of the above equation,
but not the left hand side. Hence, this case is not possible.

�

Lemma 3.6. If n = 3a1 .7a2 .13a3 .pa4
4 in Theorem 1.2 with 17 ≤ p4 ≤ 29, then there is no odd deficient perfect

number.

Proof. In this case, we have for some bi ≥ 0, (i = 1, 2, 3, 4)

(3.18) σ(3a1 .7a2 .13a3 .pa4
4 ) = 2.3a1 .7a2 .13a3 .pa4

4 − 3b1 .7b2 .13b3 .pb44

Let us define the function

g(a1, a2, a3, a4) =
25.3.(p4 − 1)

7.13.p4
− 24.3.(p4 − 1)

D0
,

where D0 = 3a1−b1 .7a2−b2+1.13a3−b3+1.pa4−b4+1
4 . So, D0 > 7.13.p4. From equation (3.18), it is clear that

f(a1, a2, a3, a4) = g(a1, a2, a3, a4) < 1.
Case 1. p4 = 29.
If D ≥ 28 then we have,

2 =
σ(n)

n
+

1

D
<

3.7.13.29

2.6.12.28
+

1

28
< 2,

which is not possible. So, the possible values of D are 3, 7, 9, 13, 21 and 27.
If, D = 3 and 7, then the argument is exactly similar to the proof of Lemma 3.1, so we omit the details here.
If D = 9, then we have from equation (3.18),

(3.19) σ(3a1 .7a2 .13a3 .29a4) = 17.3a1−2.7a2 .13a3 .29a4 .

We now note that ord17(3) = ord17(7) = ord17(29) = 16 and ord17(13) = 4, so 17 does not divide the left hand
side of equation (3.19), so this is not possible.

In a similar way, we can prove that D = 13 and 21 are also not possible, where the role of 17 is replaced by 5
and 41 respectively.

If D = 27, then from equation (3.18), we have

σ(3a1 .7a2 .13a3 .29a4) = 53.3a1−3.7a2 .13a3 .29a4 .
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From the above equation, it is clear that a1 6= 4, 6, a2 6= 2 and a3 6= 2, otherwise there will be some prime factors
on the left hand side of the above equation, which will not be in the right hand side. So, we have two possibilities
a1 = 2 or a1 ≥ 8, a2, a3 ≥ 4. For the second possibility, we have

f(a1, a2, a3, a4) ≥
(

1− 1

39

)(
1− 1

75

)(
1− 1

135

)(
1− 1

293

)
= 0.999846 · · · .

We also define the function

g(a1, a2, a3, a4) =
53.26

32.13.29
= 0.999705 · · · .

From equation (3.18), it is clear that

f(a1, a2, a3, a4) = g(a1, a2, a3, a4),

but in this case the values are incompatible. So, we see that only a1 = 2 is possible. But then, D 6= 27, so we
can conclude that none of the possibilities hold.

Case 2. p4 = 23.
If D ≥ 56 then we have,

2 =
σ(n)

n
+

1

D
<

3.7.13.23

2.6.12.22
+

1

56
< 2,

which is not possible. So, the possible values of D are 3, 7, 9, 13, 21, 23, 27, 39 and 49.
If, D = 3, 7 and 9, then the argument is exactly similar to the proof of Lemma 3.1, so we omit the details here.
If D = 13, 21, 23 and 49, then the argument is exactly similar to the argument for D = 13 in the previous

case, so we omit the details here.
If D = 27, then the argument is exactly similar to the argument for D = 27 in the previous case, so we omit

the details here.
So, we have to check only the case D = 39. Then, we have from equation (3.18)

σ(3a1 .7a2 .13a3 .23a4) = 11.3a1−1.7a2+1.13a3−1.23a4 .

Using a similar argument like in the previous case for D = 27, we can conclude that either a1 = 2 or a1 ≥
6, a2, a3 ≥ 4, and then reach a contradiction for the second possibility. So, a1 = 2 in this case, and then the
previous equation becomes

σ(7a2 .13a3 .23a4) = 11.3.7a2+1.13a3−2.23a4 .

We now note that ord13(7) = 12 and ord13(23) = 6, so 13 does not divide the left hand side of the above equation,
and hence D 6= 39.

Case 3. p4 = 19.
We note here ord7(3) = 2 and ord7(13) = ord7(19) = 6, so 7 does not divide the left hand side of equation

(3.18), and hence b2 = 0, which means D0 ≥ 73.13.19 = 84721 in this case. This implies D ≥ 49.
If a1 = 2 and D ≥ 14, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.13.19

32.6.12.18
+

1

14
< 2,

which is not possible. So, D ≤ 13, which is not possible as well from the preceding discussion. Hence, a1 ≥ 4
and we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

133

)(
1− 1

193

)
= 0.992385 · · · .

If D0 ≤ 32.72.13.19, then we have from equation (3.18)

g(a1, a2, a3, a4) ≤ 25.3.18

7.13.19
− 24.3.18

32.72.13.19
= 0.991490 · · · ,

which is not possible. So, D ≥ 32.7 = 63.
If a1 = 4 and D ≥ 142, then we have

2 =
σ(n)

n
+
d

n
<
σ(34).7.13.19

34.6.12.18
+

1

142
< 2,

which is not possible. So, we must have 63 ≤ D ≤ 141, and this means the possibilities are D = 63, 81, 91, 117 or
133.

If D = 63, then we have from equation (3.18)

112.σ(7a2 .13a3 .19a4) = 53.33.7a2 .13a3−1.19a4 .
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We now note that 11 does not divide the right hand side of the above equation, which is not possible. Hence,
D 6= 63.

In fact, in exactly a similar way, we can prove that D 6= 81, 91, 117 and 133. This means, a1 ≥ 6 and we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

73

)(
1− 1

133

)(
1− 1

193

)
= 0.996030 · · · .

If D − 0 ≤ 2.36.132, then we have

g(a1, a2, a3, a4) =
25.3.18

7.13.19
− 24.3.18

2.36.132
= 0.995915 · · · ,

which is not possible. So, we have D ≥ 143.
If a2 = 2 andD ≥ 214, then we reach a contradiction like before. So, we should have in this case 143 ≤ D ≤ 213.

Thus, the possible values of D are 169 and 189. It is not difficult to show that these are not possible, by following
the method similar to the case for D = 63 above. So, we can conclude that a2 ≥ 4.

If (a3, a4) = (2, 2), then from equation (3.18), we get after simplification

−69723(3a1+1 + 7a2+1 − 1) = 33.3a1 .7a2 − 12.3b1 .13b3 .19b4 .

The left hand side of the above equation is clearly negative, but the right hand side is positive for b3, b4 ≤ 1. Let
b3, b4 = 2, then we notice that 13 (resp. 19) divides the left hand side of equation (3.18) only when 13 (resp. 19)
divides σ(3a1) (resp. σ(7a2)). The lowest such admissible values are a1 = a2 = 8, in which case, the right hand
side of the above satisfies

33.3a1 .7a2 − 12.3b1 .13b3 .19b4 > 3a1(33.78 − 12.132.192) > 0,

which gives us a contradiction. Thus, (a3, a4) 6= (2, 2).
Again, note that if a3, a4 ≥ 4, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

135

)(
1− 1

195

)
= 0.999480 · · · .

But,

g(a1, a2, a3, a4) =
25.3.18

7.13.19
= 0.999422 · · · ,

which is not possible. So, one of a3 or a4 has to be 2.
Let a3 = 2 and a4 ≥ 4. If a1 ≥ 10 then

f(a1, a2, a3, a4) ≥
(

1− 1

311

)(
1− 1

75

)(
1− 1

133

)(
1− 1

195

)
= 0.999479 · · · ,

which is not possible. So, either a1 = 6 or a1 = 8 in this case. If a1 = 6 we must have b3 = 0, otherwise 13 will
not divide the right hand of equuation (3.18), then from equation (3.18) we have

−20019(7a2+1 + 19a4+1 − 1) = 23948889.7a2 .19a4 − 108.3b1 .19b4 .

Clearly, the left hand side of the above equation is negative, but the right hand side is positive, so this cannot
happen. If a1 = 8 and a2 ≥ 6, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

39

)(
1− 1

77

)(
1− 1

133

)(
1− 1

195

)
= 0.999492 · · · ,

which is not possible. So, we have a2 = 4, and then this implies b4 = 0. Further, since ord13(19) = 12, so we can
also conclude that b3 = 1 in this case. Now, from equation (3.18) we have

−388025331 = 88468533435.19a4 − 18.3b1 .

Clearly, the left hand side is negative, but not the right hand side, which gives us a contradiction. Combining all
the arguments in this paragraph, we can conclude that a3 6= 2. So, we must have a4 = 2.

Let a4 = 2 and a3 ≥ 4. If a1 ≥ 8 then

f(a1, a2, a3, a4) ≥
(

1− 1

39

)(
1− 1

75

)(
1− 1

135

)(
1− 1

193

)
= 0.999741 · · · ,

which is not possible. So, a1 = 6, which would then imply b3 = 0, otherwise 13 will not divide the left hand side
of equation (3.18), but only the right hand side. So, we get from (3.18), after simplification

−416433(7a2+1 + 13a3+1 − 1) = 933.7a2 .13a3 − 72.3b1 .19b4 .
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Since, here a2, a3 ≥ 4 and b1 ≤ 6, b4 ≤ 2, so the right hand side of the above is always positive, while the left
hand is always negative, which gives us a contradiction.

Combining all the arguments in the above case, we can conclude that p4 6= 19.
Case 4. p4 = 17.
If a1 ≥ 6, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

73

)(
1− 1

133

)(
1− 1

173

)
= 0.995972 · · · .

However in this case we have

g(a1, a2, a3, a4) ≤ 25.3.16

7.13.17
= 0.992889 · · · .

Both these inequalities cannot be true at the same time. So, a1 ≤ 4.
If a1 = 2, and D ≥ 17, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.13.17

32.6.12.16
+

1

17
< 2,

which is not possible. So, the possible choices for D are 3, 7, 9, 11 and 13.
If D = 3, then from equation (3.18) we have

σ(7a2 .13a3 .17a4) = 5.3.7a2 .13a3−1.17a4 .

Noting now, ord5(7) = ord5(13) = ord5(17) = 4, we see that 5 does not divide the left hand side of the above
eqaution and hence this case is not possible.

If D = 7, we have

σ(7a2 .13a3 .17a4) = 32.7a2−1.13a3−1.17a4 .

Note now, ord17(7) = 16 and ord17(13) = 4, so 17 does not divide the left hand side of the above equation and
hence this is not possible.

In a similar way, we can also show that the other values of D are not possible in this case. So, a1 6= 2.
If a1 = 4 and a2 ≥ 4 then we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

75

)(
1− 1

133

)(
1− 1

173

)
= 0.99517 · · · .

But then this is not compatible with the value of g(a1, a2, a3, a4). So, in this case a2 = 2. Further, from equation
(3.18), we can see that b2 = b3 = b4 = 0 in this case, and hence we shall have from equation (3.18), after
simplification

47.13a3 .17a4 + 64.3b1 + 2299 = 2299(13a3+1 + 17a4+1).

We can rewrite the previous equation as

13a3(47.17a4 − 29897) = 29897.17a4 − 2299− 64.3b1 ,

and looking at this equation modulo 13, we can conclude that b1 = 3. Similarly, rewriting this equation now
with b1 = 3 and looking at it modulo 17, we can conclude that this is not possible.

�

Lemma 3.7. If n = 3a1 .7a2 .11a3 .pa4
4 in Theorem 1.2 with p4 ≥ 41, then there is no odd deficient perfect number.

Proof. Let D ≥ 38, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.41

2.6.10.40
+

1

38
< 2,

which is not possible. So, in this case D ∈ {3, 7, 9, 11, 21, 27, 33}.
Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

11a3+1

)(
1− 1

pa4+1
4

)
.

Case 1. D = 3.
The proof is similar to the proof of Lemma 3.1, so we will skip the details here.
Case 2. D = 7.
We have the equation

(3.20) σ(3a1 .7a2 .11a3 .pa4
4 ) = 13.3a1 .7a2−1.11a3 .pa4

4 .
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We introduce the following function

g(a1, a2, a3, a4) =
13.23.5.(p4 − 1)

72.11.p4
.

From equation (3.20), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a1 ≥ 4, then we have,

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

413

)
= 0.992221 · · · ,

and

g(a1, a2, a3, a4) ≤ 13.23.5

72.11
= 0.96475 · · · .

Both of these inequalities cannot be true at the same time. So, a1 = 2, in which case equation (3.20) becomes

σ(7a2 .11a3 .pa4
4 ) = 32.7a2−1.11a3 .pa4

4 .

If, a2 = 2, then the above becomes

19.σ(11a3 .pa4
4 ) = 3.7.11a3 .pa4

4 ,

which would imply p4 = 19, which is not possible. So, a2 ≥ 4. If p4 ≥ 541, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).σ(74).11.541

32.74.10.540
+

1

7
< 2,

which is not possible. So, 41 ≤ p4 ≤ 523.
If p4 is one of 41, 53, 61, 67, 71, 79, 83, 89, 97, 109, 113, 127, 131, 137, 151, 157, 163, 167, 173, 179,

181, 191, 211, 223, 227, 233, 241, 257, 263, 271, 277, 281, 283, 307, 313, 317, 337, 347, 359, 367, 379,
389, 397, 421, 431, 433, 439, 443, 449, 457, 461, 467, 487, 491, 499, 503, 509, 521, then ordp4

(7) and
ordp4

(11) are both even, which is not possible. So, the possible choices of p4 are 43, 47, 59, 73, 101,
103, 107, 139, 149, 193, 197, 199, 229, 239, 251, 269, 293, 311, 331, 349, 353, 373, 383, 401, 409, 419,
463, 479, and 523.

Now, we note that ord11(7) = 10 and ord11(p4) is even if p4 is one of 43, 73, 101, 107, 139, 149,
193, 197, 239, 293, 349, 373, 409, 479 and 523; so these cases for p4 are not possible, otherwise 11 will not divide
the left hand side of equation (3.20). So, the least possible value for p4 is 47 and the highest possible value is
463.

If a3 = 2, then equation (3.20) in this case becomes

19.σ(7a2pa4
4 ) = 32.7a2−2.112.pa4

4 .

This would again imply that p4 = 19, which is not possible, so a3 ≥ 4. In this case we have

f(a1, a2, a3, a4) ≥
(

1− 1

33

)(
1− 1

75

)(
1− 1

115

)(
1− 1

473

)
= 0.96289 · · · ,

and

g(a1, a2, a3, a4) ≤ 13.23.5.462

72.11.463
= 0.962666 · · · .

Both of these inequalities cannot be true at the same time. Hence, for the remaining chocies for p4, we reach a
contradiction. This, a2 = 2 is also not possible in this case.

Combining the above arguments, we reach the conclusion that this case is not possible.
Case 3. D = 9.
We have the equation

(3.21) σ(3a1 .7a2 .11a3 .pa4
4 ) = 17.3a1−2.7a2 .11a3 .pa4

4 .

We introduce the following function

g(a1, a2, a3, a4) =
17.23.5.(p4 − 1)

32.7.11.p4
.

From equation (3.21), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a1 ≥ 4, then we have,

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

413

)
= 0.992221 · · · ,

and

g(a1, a2, a3, a4) ≤ 17.23.5

32.7.11
= 0.981241 · · · .
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Both of these inequalities cannot be true at the same time. So, a1 = 2. But, then 13 divides left hand side of
equation (3.21), but not the right hand side, which is a contradiction.

Case 4. D = 11.
We have the equation

(3.22) σ(3a1 .7a2 .11a3 .pa4
4 ) = 3a1+1.7a2+1.11a3−1.pa4

4 .

We introduce the following function

g(a1, a2, a3, a4) =
23.3.5.(p4 − 1)

112.p4
.

From equation (3.22), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a1 ≥ 4, then we have,

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

413

)
= 0.992221 · · · ,

and

g(a1, a2, a3, a4) ≤ 23.3.5

112
= 0.991736 · · · .

Both of these inequalities cannot be true at the same time. So, a1 = 2. But, then 13 divides left hand side of
equation (3.22), but not the right hand side, which is a contradiction.

Case 5. D = 21.
We have the equation

(3.23) σ(3a1 .7a2 .11a3 .pa4
4 ) = 41.3a1−1.7a2−1.11a3 .pa4

4 .

If p4 ≥ 73, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.73

2.6.10.72
+

1

21
< 2,

which is not possible. So, in this case 41 ≤ p4 ≤ 71.
We note that ord41(3) = 8, ord41(7) = ord41(11) = 40 and ord41(p4) is even when p4 ∈ {43, 47, 53, 61, 67, 71}.

This means that if p4 is one of these values, then 41 does not divide the left hand side of equation (3.23). So,
the only possibility is p4 = 59.

We introduce the following function

g(a1, a2, a3, a4) =
23.5.41.(p4 − 1)

3.72.11.p4
.

From equation (3.23), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a2 = 2, then from equation (3.23) we have 19 divides both side of the equation, but it cannot divide the

right hand side of the above equation. So, a2 ≥ 4. If a1 = 2, then from equation (3.23) we have 13 divides both
side of the equation, but it cannot divide the right hand side of the above equation. If a1 = 4, then we have

(3.24) σ(7a2 .11a3 .59a4) = 41.33.7a2−1.11a3−2.59a4 .

From equation (3.24), we can deduce by an order argument the relations 41.11a3−2 = σ(59a4), 27.59a4 = σ(7a2)
and 7a2−1 = σ(11a3). Solving these relations for a2, we will arrive at 7a2−1 < 0, which is not possible for a2 ≥ 4.
Hence a1 ≥ 6.

If a1 ≥ 6, a2 ≥ 4, then we have,

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

113

)(
1− 1

593

)
= 0.998727 · · · ,

and

g(a1, a2, a3, a4) =
23.5.41.58

3.72.11.59
= 0.9970346 · · · .

Both of these cannot be true at the same time. Thus, this case is not possible.
Case 6. D = 27.
We have the equation

(3.25) σ(3a1 .7a2 .11a3 .pa4
4 ) = 53.3a1−3.7a2 .11a3 .pa4

4 .
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If p4 ≥ 53, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.53

2.6.10.52
+

1

27
< 2,

which is not possible. So, in this case 41 ≤ p4 ≤ 47.
We note that ord53(3) = ord53(41) = 52, ord53(7) = ord53(11) = ord53(43) = 26; so p4 6= 41, 43. Thus, the

only possibility is p4 = 47.
We introduce the following function

g(a1, a2, a3, a4) =
53.23.5.(p4 − 1)

33.7.11.p4
.

From equation (3.25), it is clear that in this case f(a1, a2, a3, a4) = g(a1, a2, a3, a4).
If a2 = 2, then from equation (3.25) we see that 19 divides both sides of the equation, which is not possible.

So, a2 ≥ 4. If a1 = 2, then we see that 13 divides both sides of the equation (3.25) which is not possible. If
a1 = 4, then we have from equation (3.25)

(3.26) σ(7a2 .11a3 .47a4) = 53.3.7a2 .11a3−2.47a4 .

Like earlier, using an order argument we can get the following relations from equation (3.26): 53.11a3−2 = σ(47a4),
3.47a4 = σ(7a2) and 7a2 = σ(11a3). Solving these for a4, we shall get 47a4 < 1, which is not possible for a4 ≥ 2.
Hence, a1 ≥ 6.

If a1 ≥ 6, a2 ≥ 4, then we have,

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

113

)(
1− 1

473

)
= 0.998723 · · · ,

and

g(a1, a2, a3, a4) =
23.5.53.46

33.7.11.47
= 0.998025 · · · .

Both of these cannot be true at the same time.
Case 7. D = 33.
We have the equation

(3.27) σ(3a1 .7a2 .11a3 .pa4
4 ) = 5.13.3a1−1.7a2 .11a3−1.pa4

4 .

If p4 ≥ 47, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.47

2.6.10.46
+

1

33
< 2,

which is not possible. So, in this case p4 is either 41 or 43.
If p4 = 41, we note that ord41(3) = 8, ord41(11) = ord41(7) = 40, so 41 does not divide the left hand side of

equation (3.27), which is not possible.
Let p4 = 43. If, either a2 or a3 equals 2, then in this case 19 will divide the left hand side of equation (3.27),

but not the right hand side of it. So, a2, a3 ≥ 4.
If a1 = 6, then 1093 divides the left hand side of equation (3.27), but not the right hand side of it, so a1 6= 6.

If a1 = 4, then equation (3.27) becomes

σ(7a2 .11a3 .43a4) = 5.13.33.7a2 .11a3−3.43a4 .

However, we note that ord13(7) = ord13(11) = 12 and ord13(43) = 6, so 13 does not divide the left hand side of
the above equation. Hence, a1 6= 4.

If a1 = 2, then equation (3.27) becomes

σ(7a2 .11a3 .43a4) = 5.3.7a2 .11a3−1.43a4 .

However, we note that ord11(7) = 10 and ord11(43) = 2, so 11 does not divide the left hand side of the above
equation. Hence, a1 6= 2. Thus, a1 ≥ 6, if we combine all the above arguments.

Let

g(a1, a2, a3, a4) =
52.13.23.42

3.7.112.43
= 0.999423 · · · .

From equation (3.27), it is clear that for this case

f(a1, a2, a3, a4) = g(a1, a2, a3, a4).

We already have a1 ≥ 6 and a2, a3 ≥ 4, so

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

115

)(
1− 1

433

)
= 0.999465 · · · ,
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which is not compatible with the value of g(a1, a2, a3, a4). Hence, this case is also not possible.
Combining all the above cases completes the proof of the lemma.

�

Lemma 3.8. If n = 3a1 .7a2 .11a3 .pa4
4 in Theorem 1.2 with 29 ≤ p4 ≤ 37, then there is no odd deficient perfect

number.

Proof. In this case, we have for some bi ≥ 0, (i = 1, 2, 3, 4)

(3.28) σ(3a1 .7a2 .11a3 .pa4
4 ) = 2.3a1 .7a2 .11a3 .pa4

4 − 3b1 .7b2 .11b3 .pa4
4 .

Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

11a3+1

)(
1− 1

pa4+1
4

)
.

We also introduce the function

g(a1, a2, a3, a4) =
24.5.(p4 − 1)

7.11.p4
− 23.5.(p4 − 1)

D0
,

where D0 = 3a1−b1 .7a2−b2+1.11a3−b3+1.pa4−b4+1
4 > 7.11.p4. Clearly from equation (3.28), we have

f(a1, a2, a3, a4) = g(a1, a2, a3, a4).

Case 1. p4 = 37.
Let D ≥ 47, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.37

2.6.10.36
+

1

47
< 2,

which is not possible. So, the possible choices for D are 3, 7, 9, 11, 21, 27, 33 and 37.
If D = 3 and 7, then the argument is exactly similar to the proof of Lemma 3.1, so we omit the details here.
If D = 9 and 27, then the argument is exactly similar to the arguments for D = 9 in Case 1 of the proof of

Lemma 3.6, so we omit the details here.
We now need to check for the following values of D: 11, 21, 33 and 37.
If a1 = 2 and D ≥ 11, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.37

32.6.10.36
+

1

11
< 2,

which is not possible. So, for all the admissible values of D, we have a1 ≥ 4, and

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

373

)
= 0.992216 · · · .

If D = 11, then we have from equation (3.28)

σ(3a1 .7a2 .11a3 .37a4) = 3a1+1.7a2+1.11a3−1.37a4 .

In this case,

g(a1, a2, a3, a4) =
25.33.5

112.37
= 0.964932 · · · .

but then the above value is not compatible with the value of f(a1, a2, a3, a4). So, D 6= 11.
In a similar way, we can also prove that D 6= 21.
If D = 33, then from equation (3.28), we have

σ(3a1 .7a2 .11a3 .37a4) = 5.13.3a1−1.7a2 .11a3−1.37a4 .

If in the above a1 = 4, and taking note of ord13(7) = ord13(11) = ord13(37) = 12, we see that 13 will not divide
the left hand side of the above equation. So a1 ≥ 6. But, if a1 = 6, then 1093 divides the left hand side of the
above equation, but not the right hand side, hence, a1 ≥ 8, in which case we have

f(a1, a2, a3, a4) ≥
(

1− 1

39

)(
1− 1

73

)(
1− 1

113

)(
1− 1

373

)
= 0.996265 · · · .

In this case,

g(a1, a2, a3, a4) =
25.3.52.13

7.112.37
= 0.995565 · · · ,

but then this values is not incompatible with the value of f(a1, a2, a3, a4), hence D 6= 33.
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Now, let D = 37. If a1 = 4, then we have

2 =
σ(n)

n
+
d

n
<
σ(34).7.11.37

34.6.10.36
+

1

37
< 2,

which is not possible. So, a1 ≥ 6.
Now from equation (3.28) we have

σ(3a1 .7a2 .11a3 .37a4) = 73.3a1 .7a2 .11a3 .37a4−1.

Clearly a2 6= 2, otherwise 19 will divide the left hand side of the above equation, but not the right hand side. So,
a2 ≥ 4.

Thus, we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

75

)(
1− 1

113

)(
1− 1

373

)
= 0.998713 · · · .

Here,

g(a1, a2, a3, a4) =
25.32.5.73

7.11.372
= 0.99722 · · · ,

but then this value is incompatible with the value of f(a1, a2, a3, a4), hence D 6= 37.
Case 2. p4 = 31.
Let D ≥ 93, then we have

2 =
σ(n)

n
+
d

n
<

3.7.11.31

2.6.10.30
+

1

93
< 2,

which is not possible. So, the possible choices for D are 3, 7, 9, 11, 21, 27, 31, 33, 49, 63, 77 and 81.
If D = 3, 7 and 9, then the argument is exactly similar to the proof of Lemma 3.1, so we omit the details here.
If D = 21, 27, 31, 49 and 77, then the argument is exactly similar to the arguments for D = 9 in Case 1 of the

proof of Lemma 3.6, the only difference is the role of the appropriate prime in taking the orders, so we omit the
details here.

We now need to check for the following values of D: 11, 33, 63 and 81.
If D = 11, then from equation (3.28), we have

σ(3a1 .7a2 .11a3 .31a4) = 3a1+1.7a2+1.11a3−1.31a4 .

Clearly, a1 6= 2, otherwise 13 will divide the left hand side of the above equation, but not the right hand side.
So, a1 ≥ 4. Thus, we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

313

)
= 0.992202 · · · .

Also, in this case

g(a1, a2, a3, a4) =
24.32.52

112.31
= 0.959744 · · · ,

and from equation (3.28), it is clear that

f(a1, a2, a3, a4) = g(a1, a2, a3, a4),

which is not compatible with the bounds found in this case. So, D 6= 11.
If a1 = 2 and D ≥ 12, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.31

32.6.10.30
+

1

12
< 2,

which is not possible.
So, for all the remaining admissible values of D, we have a1 ≥ 4, and

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

313

)
= 0.992202 · · · .

If D = 33, then we have from equation (3.28)

σ(3a1 .7a2 .11a3 .31a4) = 5.13.3a1−1.7a2 .11a3−1.31a4 .

In this case,

g(a1, a2, a3, a4) =
53.13.24

112.7.31
= 0.990212 · · · .

but then the above value is not compatible with the value of f(a1, a2, a3, a4). So, D 6= 33.
The case for D = 63 is done similarly.
If D = 81, then we have from equation (3.28)
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σ(3a1 .7a2 .11a3 .31a4) = 23.3a1−4.7a2+1.11a3−1.31a4 .

If a1 = 4, in this case we have

2 =
σ(n)

n
+
d

n
<
σ(34).7.11.31

34.6.10.30
+

1

81
< 2,

which is not possible. If a1 = 6, then 1093 divides the left hand side, but not the right hand side of the above
equation. So, a1 ≥ 8. In a similar way, we can prove a2 ≥ 4 and a3 ≥ 4. Hence, we have

f(a1, a2, a3, a4) ≥
(

1− 1

39

)(
1− 1

75

)(
1− 1

115

)(
1− 1

313

)
= 0.999850 · · · ,

and

g(a1, a2, a3, a4) =
24.52.23

33.11.31
= 0.999240 · · · .

But, from equation (3.28) we have
f(a1, a2, a3, a4) = g(a1, a2, a3, a4),

which is not compatible with the bounds above. Hence, D 6= 81.
Case 3. p4 = 29.
If a1 = 2 and D ≥ 13, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.29

32.6.10.28
+

1

13
< 2,

which is not possible. So, in this case the possible values of D are 3, 7, 9 and 11.
If D = 3, then equation (3.28) becomes

13.σ(7a2 .11a3 .29a4) = 5.3.7a2 .11a3 .29a4 .

Clearly 13 does not divide the right hand side of the above equation, so this is not possible. In a similar way, we
can show that D = 9 and D = 11 are not possible.

If D = 7, then equation (3.29) becomes

σ(7a2 .11a3 .29a4) = 32.7a2−1.11a3 .29a4 .

We now note that ord11(7) = ord11(29) = 10, so this case is also not possible.
In conclusion from the above discussion, we have a1 ≥ 4, in which case we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

293

)
= 0.992195 · · · .

If D0 ≤ 33.7.11.29, then we have

g(a1, a2, a3, a4) ≤ 24.5.36

7.11.37
− 23.5.36

33.7.11.29
= 0.986997 · · · .

This is not compatible with the value of f(a1, a2, a3, a4), so D0 > 33.7.11.29, which means D > 27. But, if
D ≥ 161, then we get a contradiction. So, 28 ≤ D ≤ 160, which means that the possible choices of D are
29, 33, 49, 77, 81, 87, 99 and 121.

If D = 29, then from equation (3.28) we have

σ(3a1 .7a2 .11a3 .29a4) = 19.3a1+1.7a2 .11a3 .29a4 ,

Using an order argument we can conclude that 19 | σ(7a2 .11a3), 3a1+1 | σ(7a2), 11a3 | σ(3a1), 7a2 | σ(11a3 .29a4)
and 29a4 | σ(7a2). We shall have two cases, depending on whether 19 divides σ(7a2) or whether 19 divides
σ(11a3).

If it is the former case, then after simplifying all the relations we shall get

61607.11a3 .29a4 + 31920.29a4 + 287 = −7(11a3+1 + 29a4+1),

which is not possible, because both the sides are of different signs for ai ≥ 2. We shall reach a similar contradiction
if we take the later case as well. So, D 6= 29.

If D = 33, then from equation (3.28) we have

g(a1, a2, a3, a4) =
25.52.13

3.112.29
= 0.987936 · · · ,

which is not compatible with the value of f(a1, a2, a3, a4) in this case. So, D 6= 33.
If D = 49, then, we have from equation (3.28)

σ(3a1 .7a2 .11a3 .29a4) = 97.3a1 .7a2−2.11a3 .29a4 ,
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from which using an order argument we can conclude that 97 does not divide the left hand side of the above
equation, and hence this is not possible.

The cases for D = 77 and 121 are dealt with similarly.
The cases for D = 81, 87 and 99 are exactly similar to the D = 81 case when p4 = 31 above, so we omit the

details here.
Combining now, all the cases we conclude the proof of this lemma.

�

Lemma 3.9. If n = 3a1 .7a2 .11a3 .pa4
4 in Theorem 1.2 with 13 ≤ p4 ≤ 23, then there is only one odd deficient

perfect number.

Proof. In this case, we have for some bi ≥ 0, (i = 1, 2, 3, 4)

(3.29) σ(3a1 .7a2 .11a3 .pa4
4 ) = 2.3a1 .7a2 .11a3 .pa4

4 − 3b1 .7b2 .11b3 .pa4
4 .

Let us use the function f defined earlier; which in this case is

f(a1, a2, a3, a4) =

(
1− 1

3a1+1

)(
1− 1

7a2+1

)(
1− 1

11a3+1

)(
1− 1

pa4+1
4

)
.

We also introduce the function

g(a1, a2, a3, a4) =
24.5.(p4 − 1)

7.11.p4
− 23.5.(p4 − 1)

D0
,

where D0 = 3a1−b1 .7a2−b2+1.11a3−b3+1.pa4−b4+1
4 > 7.11.p4. Clearly from equation (3.29), we have

f(a1, a2, a3, a4) = g(a1, a2, a3, a4).

Case 1. p4 = 23.
If a1 = 2 and D ≥ 17, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.23

32.6.10.22
+

1

17
< 2,

which is not possible. So, possible choices for D in this case are 3, 7, 9 and 11.
If D = 3, then equation (3.29) becomes

(3.30) 13.σ(7a2 .11a3 .23a4) = 5.3.7a2 .11a3 .23a4 ,

clearly this is not possible as 13 does not divide the left hand side of this equation. The cases for D = 9 and 11
are similarly done.

If D = 7, then we have similar to equation (3.30), the following

σ(7a2 .11a3 .23a4) = 32.7a2−1.11a3 .23a4 .

We now note that, ord23(7) = ord23(11) = 22, hence 23 does not divide the right hand side of the above equation,
so this case is not possible. Thus, we have a1 ≥ 4.

If a1 ≥ 6, we have

f(a1, a2, a3, a4) ≥
(

1− 1

37

)(
1− 1

73

)(
1− 1

113

)(
1− 1

233

)
= 0.995798 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.5.22

7.11.23
= 0.993789 · · · .

Both of these cannot be true at the same time. So, a1 = 4.
If a1 = 4, a2 ≥ 4, we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

75

)(
1− 1

113

)(
1− 1

233

)
= 0.994996 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.5.22

7.11.23
= 0.993789 · · · .

Both of these cannot be true at the same time. So, a1 = 4, a2 = 2. In this case, it is not difficult to see from
equation (3.29) that b1 = 1 and b4 = 0. Then from equation (3.29), after simplification we shall arrive at

473.11a3 .23a4 + 2299(23a4+1 + 11a3+1) = 220.7b2 .11b3 − 2299.
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We note that b2 equals either 1 or 2 and b3 ≤ a3, so in this scenario the right hand side of the above equation
will always be less than the left hand side, and hence this is not possible.

Case 2. p4 = 19.
If a1 ≥ 4, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

193

)
= 0.992091 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.5.18

7.11.19
= 0.984279 · · · .

Both of these cannot be true at the same time. So, a1 = 2.
If a1 = 2 and D ≥ 24, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.19

32.6.10.18
+

1

24
< 2,

which is not possible. So, possible choices for D in this case are 3, 7, 9, 11, 19 and 21.
If D = 3, we have from equation (3.29),

13.σ(7a2 .11a3 .19a4) = 5.3.7a2 .11a3 .19a4 .

It is clear that 13 divides the left hand side of the above equation, but not the right hand side, hence this is not
possible.

The proofs for the cases D = 9, 11, 19 and 21 are exactly the same, so we omit the details here.
If D = 7, then we have from equation (3.29),

σ(7a2 .11a3 .19a4) = 32.7a2−1.11a3 .19a4 .

We note that ord11(7) = ord11(19) = 10 and hence 11 does not divide the left hand side of the above equation,
so this is not possible.

Case 3. p4 = 17.
If a1 ≥ 4, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

173

)
= 0.992033 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.5.16

7.11.17
= 0.977846 · · · .

Both of these cannot be true at the same time. So, a1 = 2.
If a1 = 2 and D ≥ 33, then we have

2 =
σ(n)

n
+
d

n
<
σ(32).7.11.17

32.6.10.16
+

1

33
< 2,

which is not possible. So, possible choices for D in this case are 3, 7, 9, 11, 17 and 21.
If D = 3, we have from equation (3.29),

13.σ(7a2 .11a3 .17a4) = 5.3.7a2 .11a3 .17a4 .

It is clear that 13 divides the left hand side of the above equation, but not the right hand side, hence this is not
possible.

The proofs for the cases D = 9, 11, 17 and 21 are exactly the same, so we omit the details here.
If D = 7, then we have from equation (3.29),

σ(7a2 .11a3 .17a4) = 32.7a2−1.11a3 .17a4 .

We note that ord11(7) = ord11(17) = 10 and hence 11 does not divide the left hand side of the above equation,
so this is not possible.

Case 4. p4 = 13.
If a1 ≥ 4, then we have

f(a1, a2, a3, a4) ≥
(

1− 1

35

)(
1− 1

73

)(
1− 1

113

)(
1− 1

133

)
= 0.991784 · · · ,

and

g(a1, a2, a3, a4) ≤ 24.5.12

7.11.13
= 0.959041 · · · .

Both of these cannot be true at the same time. So, a1 = 2.
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We can use a similar argument to get a2 = a3 = a4 = 2. So the only possibility is that, n = 32.72.112.132 is
an odd deficient perfect number, which is known to be true.

Combining all the above cases, we conclude the proof of the lemma.
�

Proof of Theorem 1.2. Combining all the lemmas of this section, proves the result. �

4. Remarks

In [1], Dutta and Saikia has conjectured that there exists only finitely many odd deficient perfect numbers
with k distinct prime factors, when k ≥ 2. The result presented in this paper give evidence to support this
conjecture for k = 4. It is the belief of the author that there exists only one odd deficient perfect number with
four distinct prime factors, which was also conjectured in [1]. It might also be possible to prove this conjecture
using the techniques used here, but the calculations are very tedious. In fact, the author has been able to make
some progress on this, namely if 5 divides a deficient perfect number with four distinct prime factor, then the
third smallest prime factor must be less than 32. This work might be reported in another paper.
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