FURTHER CONGRUENCES FOR (4, 8)-REGULAR BIPARTITION QUADRUPLES MODULO POWERS OF 2

MANJIL P. SAIKIA

Abstract. We prove some new congruences modulo powers of 2 for (4,8)-regular bipartition quadruples, using an algorithmic approach.
A partition λ of n is a non-negative sequence of integers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ such that the λ_{i} 's sum up to n. A partition ℓ-tuple of n is an ℓ tuple of partitions $\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{\ell}\right)$ such that the sum of all the parts of Λ_{i} is n. Recently, Nayaka Nay22 introduced (s, t)-regular bipartition quadruples of a positive integer n, denoted by $B Q_{s, t}$ to be the numbers given by the generating function

$$
\sum_{n \geq 0} B Q_{s, t}(n) q^{n}=\frac{\left(q^{s} ; q^{2}\right)_{\infty}^{4}\left(q^{t} ; q^{t}\right)_{\infty}^{4}}{(q ; q)_{\infty}^{8}}
$$

where

$$
(a ; q)_{\infty}:=\prod_{n \geq 0}\left(1-a q^{n}\right), \quad|q|<1 .
$$

Nayaka proved several congruence properties satisfied by $B Q_{s, t}(n)$ for different values of (s, t). He proved the results using elementary q-series techniques. The aim of this short note is to extend Nayaka's list of congruences for $(s, t)=(4,8)$ using an algorithmic approach. We use Smoot's Smo21 implementation of an algorithm of Radu Rad15] (which we will describe in the next section) to prove this extended list of congruences. This approach has been used very recently by the author [Sai23] to extend some other congruences proved by Nayaka and Naika (NN22.

In this note, we prove the following result.

[^0]Theorem 1. For all $n \geq 0$, we have

$$
\begin{aligned}
B Q_{4,8}(4 n+2) & \equiv 0 \quad(\bmod 4), \\
B Q_{4,8}(4 n+3) & \equiv 0 \quad(\bmod 64), \\
B Q_{4,8}(8 n+4) & \equiv 0 \quad(\bmod 2), \\
B Q_{4,8}(8 n+6) & \equiv 0 \quad(\bmod 8), \\
B Q_{4,8}(8 n+7) & \equiv 0 \quad(\bmod 256), \\
B Q_{4,8}(16 n+9) & \equiv 0 \quad(\bmod 64), \\
B Q_{4,8}(16 n+13) & \equiv 0 \quad(\bmod 512), \\
B Q_{4,8}(16 n+15) & \equiv 0 \quad(\bmod 512), \\
B Q_{4,8}(32 n+17) & \equiv 0 \quad(\bmod 32), \\
B Q_{4,8}(32 n+21) & \equiv 0 \quad(\bmod 256), \\
B Q_{4,8}(32 n+25) & \equiv 0 \quad(\bmod 1024), \\
B Q_{4,8}(32 n+29) & \equiv 0 \quad(\bmod 1024), \\
B Q_{4,8}(64 n+9) & \equiv 0 \quad(\bmod 64), \\
B Q_{4,8}(64 n+33) & \equiv 0 \quad(\bmod 16), \\
B Q_{4,8}(64 n+41) & \equiv 0 \quad(\bmod 512), \\
B Q_{4,8}(64 n+49) & \equiv 0 \quad(\bmod 64), \\
B Q_{4,8}(64 n+57) & \equiv 0 \quad(\bmod 4096) .
\end{aligned}
$$

Remark 2. Nayaka Nay22 had proved the following

$$
B Q_{4,8}(8 n+7) \equiv 0 \quad(\bmod 128)
$$

Proof of Theorem 1. To prove Theorem 1, we shall use Radu's Ramanujan-Kolberg algorithm Rad15 as implemented by Smoot Smo21] for Mathematica, using his package RaduRK. Smoot Smo21 has detailed instructions on its installation and usage. First we invoke the package in Mathematica as follows:
In [1] := <<RaduRK

Before running the program, we need to set two global variables q and t :

$$
\operatorname{In}[2]:=\{\operatorname{Set} \operatorname{Var} 1[q], \operatorname{Set} \operatorname{Var} 2[\mathrm{t}]\}
$$

The proof of all the congruences are similar, so we shall only prove (5) in details, which can be proved by the procedure call

$$
\operatorname{In}[1]:=\operatorname{RK}[4,8,\{-8,0,4,4\}, 8,7]
$$

After a few seconds, we get the proof in the form of the following output.

	N :	4
	$\left\{\mathrm{M},\left(r_{\delta}\right)_{\delta \mid M}\right\}$:	$\{8,\{-8,0,4,4\}\}$
	m :	8
	$P_{m, r}(\mathrm{j})$:	\{7\}
Out[1] :=	$f_{1}(\mathrm{q})$:	$\frac{(q ; q)_{\infty}^{66}\left(q^{2} ; q^{2}\right)_{\infty}^{10}}{q^{8}\left(q^{4} ; q^{4}\right)_{\infty}^{76}}$
	t:	$\frac{(q ; q)_{\infty}^{8}}{q\left(q^{4} ; q^{4}\right)_{\infty}^{8}}$
	AB:	\{1\}
	$\left\{p_{g}(\mathrm{t}): \mathrm{g} \in \mathrm{AB}\right\}$	$\begin{gathered} \left\{21760 t^{8}+23318528 t^{7}+5439488000 t^{6}\right. \\ +517291900928 t^{5}+25120189972480 t^{4} \\ +681697209221120 t^{3}+10484942882471936 t^{2} \\ +85568392920039424 t+288230376151711744\} \end{gathered}$
	Common Factor:	256

The interpretation of this output is as follows.
The first entry in the procedure call $\operatorname{RK}[4,8,\{-8,0,4,4\}, 8,7]$ corresponds to specifying $N=4$, which fixes the space of modular functions

$$
M\left(\Gamma_{0}(N)\right):=\text { the algebra of modular functions for } \Gamma_{0}(N) .
$$

The second and third entry of the procedure call $\operatorname{RK}[4,8,\{-8,0,4,4\}, 8,7]$ gives the assignment $\left\{M,\left(r_{\delta}\right)_{\delta \mid M}\right\}=\{8,(-8,0,4,4)\}$, which corresponds to specifying $\left(r_{\delta}\right)_{\delta \mid M}=$ $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(-8,0,4,4)$, so that

$$
\sum_{n \geq 0} B Q_{4,8}(n) q^{n}=\prod_{\delta \mid M}\left(q^{\delta} ; q^{\delta}\right)_{\infty}^{r_{\delta}}=\frac{\left(q^{4} ; q^{4}\right)^{4}\left(q^{8} ; q^{8}\right)^{4}}{(q ; q)^{8}}
$$

The last two entries of the procedure call $\operatorname{RK}[4,8,\{-8,0,4,4\}, 8,7]$ corresponds to the assignment $m=8$ and $j=7$, which means that we want the generating function

$$
\sum_{n \geq 0} B Q_{4,8}(m n+j) q^{n}=\sum_{n \geq 0} B Q_{4,8}(8 n+7) q^{n}
$$

So, $P_{m, r}(j)=P_{8, r}(7)$ with $r=(-8,0,4,4)$.
The output $P_{m, r}(j):=P_{8,(-8,0,4,4)}(7)=\{7\}$ means that there exists an infinite product

$$
f_{1}(q)=\frac{(q ; q)_{\infty}^{66}\left(q^{2} ; q^{2}\right)_{\infty}^{10}}{q^{8}\left(q^{4} ; q^{4}\right)_{\infty}^{76}},
$$

such that

$$
f_{1}(q) \sum_{n \geq 0} B Q_{4,8}(8 n+7) q^{n} \in M\left(\Gamma_{0}(4)\right) .
$$

Finally, the output

$$
t=\frac{(q ; q)_{\infty}^{8}}{q\left(q^{4} ; q^{4}\right)_{\infty}^{8}}, \quad A B=\{1\}, \quad \text { and } \quad\left\{p_{g}(\mathrm{t}): \mathrm{g} \in A B\right\}
$$

presents a solution to the question of finding a modular function $t \in M\left(\Gamma_{0}(4)\right)$ and polynomials $p_{g}(t)$ such that

$$
f_{1}(q) \sum_{n \geq 0} B Q_{4,8}(8 n+7) q^{n}=\sum_{g \in A B} p_{g}(t) \cdot g
$$

In this specific case, we see that the singleton entry in the set $\left\{p_{g}(\mathrm{t}): \mathrm{g} \in A B\right\}$ has the common factor 256 , thus proving equation (5).

The other congruences in Theorem 1 can be proved in a similar way. For instance, to prove (17) we run the procedure call $\operatorname{RK}[4,8,\{-8,0,4,4\}, 64,57]$. The output file generated by Mathematica which proves all the congruences in Theorem 1 can be downloaded from https: //manjilsaikia.in/publ/mathematica/BQ-4-8.nb.

For more details on the steps described above, one can consult Radu Rad15] and Smoot [Smo21].

Statements and Declarations

Funding. The author is not funded by any source.
Conflicts of interests/Competing interests. The author declares no conflicts of interests and/or competing interests.

References

[Nay22] S.S. Nayaka. Congruences for (s,t)-regular bipartition quadruples. J. Anal., 30:651-666, 2022.
[NN22] S.S. Nayaka and M.S.M Naika. Congruences modulo powers of 2 for t-colored overpartitions. Bol. Soc. Mat. Mex., 28:66, 2022.
[Rad15] Cristian-Silviu Radu. An algorithmic approach to Ramanujan-Kolberg identities. J. Symbolic Comput., 68(part 1):225-253, 2015.
[Sai23] Manjil P. Saikia. Some missed congruences modulo powers of 2 for t-colored overpartitions,. Bol. Soc. Mat. Mex., 29:15, 2023.
[Smo21] Nicolas Allen Smoot. On the computation of identities relating partition numbers in arithmetic progressions with eta quotients: an implementation of Radu's algorithm. J. Symbolic Comput., 104:276-311, 2021.

Department of Humanities and Basic Sciences, Indian Institute of Information Technology (IIIT) Manipur, Imphal 795002, Manipur, India

Email address: manjil@saikia.in

[^0]: 2020 Mathematics Subject Classification. 11P81, 11P83.
 Key words and phrases. integer partitions, Ramanujan-type congruences, Radu's algorithm.

