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Abstract. In this work we study tilings of regions in the square lattice with
L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an
arbitrary region in general is NP-complete, nonetheless, we identify restrictions
to the problem where it either remains NP-complete or has a polynomial time
algorithm. First, we characterize the possibility of when an Aztec rectangle has an
L-tromino tiling, and hence also an Aztec diamond; if an Aztec rectangle has an
unknown number of defects or holes, however, the problem of deciding a tiling is
NP-complete. Then, we study tilings of arbitrary regions where only 180◦ rotations
of L-trominoes are available. For this particular case we show that deciding the
existence of a tiling remains NP-complete; yet, if a region contains certain so-
called “forbidden polyominoes” as subregions, then there exists a polynomial time
algorithm for deciding a tiling.
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1 Introduction

1.1 Background

A packing puzzle is a solitary game where a player tries to find a way to cover a given
shape using polyominoes, where a polyomino is a set of squares joined together by their
edges. The computational complexity of packing puzzles was studied by Demaine and
Demaine [3] who showed that tiling a shape or region using polyominoes is NP-complete.

In this work we study tilings of regions in the square lattice with L-shaped trominoes
(a polyomino of three cells) called an L-Tromino or simply tromino in this work. A cell
in Z2 is a subset [a, a+ 1]× [b, b+ 1] and a region is any finite union of connected cells. At
our disposal we have an infinite amount of trominoes and would like to know if a given
region can be covered or tiled with trominoes.

The problem of tiling with trominoes was first studied by Conway and Lagarias [2]
who presented an algebraic necessary condition for a region in order to have a tiling.
Moore and Robson [8] showed that deciding if a region can be covered with trominoes
is NP-complete. Later Horiyama et al. [5] presented another proof of NP-completeness
by constructing an one-one reduction which implies that counting the number of tilings
with trominoes is #P-complete. Counting the number of tilings with L-trominoes was
also studied by Chin et al. [1] using generating functions.
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1.2 Contributions

In this work we aim at identifying instances of the tiling problem with trominoes that
either have efficient algorithms or it remains NP-complete. As a further generalization of
the problem, we also consider regions with “defects” or holes, that is, we want to know
if there is a tiling with trominoes without covering the defects. First we study the Aztec
rectangle (and hence, also an Aztec diamond) [4,10] and show that any Aztec rectangle
of side lengths a, b can be covered with trominoes if and only if a(b + 1) + b(a + 1) ≡ 0
(mod 3) (Theorem 1), which implies the existence of a polynomial time algorithm for
finding a tiling in an Aztec rectangle, and hence, an Aztec diamond. Then we show that
for the cases when a(b + 1) + b(a + 1) ≡ 0 (mod 3) does not hold, if an Aztec Rectangle
has exactly one defect, then it can be covered with trominoes (Theorem 2). In general,
however, deciding the tiling of an Aztec diamond with an unknown number of defects is
NP-complete (Theorem 3).

In the second part of this paper we study a restricted case of the tiling problem where
we only have 180◦ rotations of the trominoes available. Here we show that the problem
remains NP-complete (Theorem 4) by slightly modifying the one-one reduction from the
1-in-3 Graph Orientation Problem of Horiyama et al. [5], whereas any Aztec rectangle
has no tiling at all (Theorem 5). Nevertheless, we show that if a region does not contain
any of the so-called “forbidden polyominoes” identified in this work, then that region
has an efficient algorithm for deciding a tiling (Theorem 6). This latter result is proved
by constructing a graph representation of the region, called an intersection graph, and
identifying independent sets of certain size. If the intersection graph has a claw, then that
claw will correspond to a forbidden polyomino; if the graph is claw-free, however, we can
use well-known efficient algorithms for finding independent sets, and hence, a tiling for
the region.

Finally we close this paper in Section 5 where we study a relation between L-Trominoes
and I-Trominoes. We introduce a technique for decomposing a region in simple parts
that yields an efficient algorithm for finding L-Tromino covers. This tiling technique is
a modification of the proof of Theorem 5 for tiling the Horiyama et al. [5] gadgets with
I-Trominoes to tiling general regions with L-Trominoes.

2 Preliminaries

In this work we will use Z to denote the set of integers and [a, b] to denote the discrete
interval {a, a + 1, . . . , b}.

A region R is a finite union of connected cells, where connected means that any two
cells in R share one common edge (this convention is only restricted to the regions we
study in this paper). If a cell is the set of points [a, a+ 1]× [b, b+ 1], we label such cell by
(a, b) which we refer to as the cell’s coordinate. Two cells are adjacent if the Manhattan
distance, i.e., the L1-norm, of their coordinates is 1; thus, two cells in diagonal to each
other are not adjacent.

A tromino is a polyomino of 3 cells. In general there are two types of trominoes, the
L-tromino and the I-tromino. An L-tromino is a polyomino of 3 cells with an L shape.
An I-tromino is a polyomino of 3 straight cells with the form of an I. In this work we
will mostly be dealing with L-Trominos and we will refer to them simply as trominoes;
I-trominoes will appear later but we will make sure to clarify to which type of tromino
we are referring to.



(a) Right-oriented (b) Left-oriented oriented

Fig. 1: The 180-TROMINO problem either takes trominoes from the left figure or the
right figure.

A defect is a cell that is “marked” in the sense that no tromino can be placed on top
of that cell. A cover or tiling of a region R is a set of trominoes covering all cells of R
that are not defects without overlapping and each tromino is packed inside R. The size
of a cover is the number of tiles in it.

Definition 1. TROMINO is the following problem:

INPUT : a region R with defects.
OUTPUT : “yes” if R has a cover and “no” otherwise.

Moore and Robson [8] proved that TROMINO is NP-complete and Horiyama et al.
[5] proved that #TROMINO, the counting version of TROMINO, is #P-complete.

In this work we will also consider tilings where only trominoes with 180◦ rotations are
used. More precisely, given a region R we want to find a cover where all trominoes are
right-oriented as in Fig.1(a) or left-oriented as in Figure 1(b). We will refer to trominoes
where only their 180◦ rotations are considered as 180-trominoes. A 180-cover of R is a
cover with 180-trominoes.

Definition 2. 180-TROMINO is the following problem:

INPUT : a region R with defects.
OUTPUT : “yes” if R has a 180-cover and “no” otherwise.

3 Tiling of the Aztec Rectangle

The Aztec Diamond of order n, denoted AD(n), is the union of lattice squares [a, a+ 1]×
[b, b + 1], with a, b ∈ Z, that lie completely inside the square {(x, y) | |x| + |y| ≤ n + 1}
[4]. Figure 2 shows the first four Aztec diamonds. Tilings of the Aztec diamond with
dominoes was initially studied by Elkies et al. [4] and later by several other people.

The concept of an Aztec diamond can be very easily extended to that of an Aztec
rectangle. We denote by ARa,b the Aztec rectangle which has a unit squares on the
southwestern side and b unit squares on the northwestern side; in the case when a = b = n
we get an Aztec diamond of order n. When dealing with Aztec rectangle, with no loss
of generality, we always assume that a < b. As an example Fig.3 shows AR4,10. Domino
tilings of Aztec rectangles have been studied by various mathematicians starting with
Mills et. al. [6].

In the following subsections we study tilings of the Aztec rectangle using trominoes
with and without defects, and then specialize them to Aztec diamonds.



(a) AD(1) (b) AD(2) (c) AD(3) (d) AD(4)

Fig. 2: Aztec diamonds of order 1, 2, 3 and 4.

Fig. 3: Aztec rectangle AR4,10.

3.1 Tilings with No Defects

For any Aztec rectangle ARa,b with no defects, we can completely understand when there
is a tiling. The following theorem gives a characterization.

Theorem 1. ARa,b has a cover if and only if a(b + 1) + b(a + 1) ≡ 0 (mod 3).

As a corollary, we get the following for the Aztec diamond.

Corollary 1. AD(n) has a cover if and only if n(n + 1) ≡ 0 (mod 3).

To prove Theorem 1, first we present tilings of particular cases of the Aztec rectangle
in Lemmas 2 and 3. The following lemma is trivial.

Lemma 1. An Aztec rectangle, ARa,b contains a(b+ 1) + b(a+ 1) unit squares. Further,
specializing a = b = n we get that an Aztec diamond of order n contains 2n(n + 1) unit
squares.

Define a stair as a polyomino made-up only of trominoes with their 180◦ rotations
connected as in Fig.4(a). The same stair can be rotated 90◦ to obtain another stair. A
k-stair is a co-joined set of k stairs, where a stair is joined to another stair by matching
their extremes; for example, in Fig.4(b) we can see two stairs where the lowest extreme of
the upper stair is matched with the upper extreme of the lower stair. This idea is easily
extended to a set of k stairs thus giving a k-stair as in Fig.4(c). A k-stair can also be
rotated 90◦ to obtain another k-stair. The height of a k-stair is the number of steps in it.
It is easy to see that the height of a k-stair is 3k + 2. In addition, a single tromino would
be a 0-stair.



(a) 1-stair (b) 2-stair (c) k-stair

Fig. 4: A stair also includes all 90◦ rotations.

(a) Tiling with a single
stair.

(b) Tiling with a double
stair.

Fig. 5: Tilings of Lemmas 2 and 3.

Lemma 2. If 3 | a, b and ARa,b has a cover, then ARa+2,b+2 has a cover.

Proof. If a, b are multiples of 3, then an a/3-stair and an b/3-stair can be used to tile
aroundARa,b along the shorter and longer sides respectively, using the pattern of Fig.5(a).
This tiling increments the order of the Aztec rectangle by 2, thus obtaining a tiling for
ARa+2,b+2. ut

Lemma 3. If 3 | a + 1, b + 1 and ARa,b has a cover, then ARa+4,b+4 has a cover.

Proof. To find a tiling for ARa+4,b+4 we use four copies of AD(2) added to the four
corners of ARa,b. Then, to complete the tiling, we use two (a− 2)/3 and (b− 2)/3-stairs
one on top of each other along the shorter and longer sides respectively, to complete the
border. The entire construction follows the pattern of Fig.5(b). This tiling increments the
order of the Aztec rectangle by 4, thus obtaining a tiling for ARa+4,b+4. ut

The above two Lemmas gives as easy corollaries the corresponding results for Aztec dia-
monds (in the spirit of Corollary 1.)

Now, let us prove Theorem 1.

Proof (Proof of Theorem 1). The values for which a(b + 1) + b(a + 1) ≡ 0 (mod 3) holds
are a, b = 3k and a, b = 3k − 1 for some k ∈ Z.

Thus, the statement is equivalent to saying that for all positive integers k there is a
tiling of ARa,b where 3 | a, b or 3 | a + 1, b + 1 and that there are no tilings for ARa,b

when 3 | a + 2, b + 2.



(a) Base induction
case.

(b) Length additional pieces. (c) Breadth addi-
tional piece.

Fig. 6: Base case of Lemma 2.

(a) Base induc-
tion case.

(b) Length
additional
piece.

(c) Length
additional
piece.

(d) Breadth ad-
ditional piece.

Fig. 7: Base case of Lemma 3.

We show the second part now, which is easy since if we have ARa,b with a, b of the
form 3k + 2, then the number of lattice squares inside ARa,b is not divisible by 3 and
hence we cannot tile this region with trominoes.

We come to the first cases now. Using Lemmas 2 and 3, this part is clear if we can
show the base induction case to be true.

The base case of Lemma 2 is shown in Fig.6(a), which is AR3,6. Once we have a
tiling of AR3,6, we can use Lemma 2 to create a tiling of an Aztec rectangle whose sides
are increased by 2. We can also increase AR3,6 by using the additional pieces shown in
Fig.6(b,c) using them in combinations with any case of Aztec rectangle satisfying the
properties of Lemma 2 to increase either the longer or the shorter sides, and if all three
additional pieces are used then we can increase both sides of ARa,b.

Similarly, the base case of Lemma 3 is shown in Fig.7(a), which is AR2,5. Once we
have a tiling of AR2,5, we can use Lemma 3 to create a tiling of an Aztec rectangle whose
sides are increased by 4. We can also increase ARa,b by using the additional pieces shown
in Fig.7(b,c,d) using them in combinations with any case of Aztec rectangle satisfying the
properties of Lemma 3 to increase either the longer or the shorter sides, and if all three
additional pieces are used then we can increase both sides of ARa,b. ut

An O(b2) time algorithm is immediately obtained from the proof of Theorem 1, and
also for Aztec diamonds (we omit the details due to lack of space).

3.2 Tiling with Defects

From Theorem 1 we know that for any positive integers a, b, the Aztec rectangles with no
defects ARa,b such that 3 divides a, b or 3 divides a+ 1, b+ 1 have a cover but if 3 divides



(a) Fringe (b) Tiling pattern

Fig. 8: Tiling of ARa,b with one defect. A fringe can be composed of any number of order
1 Aztec diamonds AD(1) joined by their upper right and lower left cells. An reversed
fringe is obtained by joining order 1 Aztec diamonds by their upper left and lower right
cells.

a + 2, b + 2, then ARa,b does not have a tiling. We show that if such an Aztec rectangle
has exactly one defect, then it can be covered with trominoes.

Theorem 2. ARa,b with a, b of the form 3k − 2 with one defect has a cover.

Proof. To tile ARa,b with one defect we use a construct which we call a fringe appearing
in Fig.8(a). It is easy to check that if a fringe has exactly one defect, then it can be covered
with trominoes.

To construct a tiling for ARa,b with one defect we place a fringe in a way that includes
the defect and the left and right ends of the fringe touches the boundaries of the Aztec
rectangle as in Fig.8(b). Then we use the tiling pattern of Fig.8(b) where we put stairs
above and below the fringe. ut

As an easy corollary, we obtain the corresponding result for Aztec diamonds.

Corollary 2. For any positive integer k, the Aztec Diamond AD(3k− 2) with one defect
has a cover.

We can consider many different classes of defects, and it is observed that some of these
classes have easy tilings, as an example, we have in Fig.9(a) an Aztec rectangle with four
defects on its corners. A tiling of this region is shown in Fig.9(b). In the combinatorics
literature, tilings of regions with defects of several kinds for Aztec rectangle have been
studied (see [10] for the most general class of boundary defects).

Remark 1. Similar defects can be studied for Aztec Diamonds as well. In fact, we can
delete all cells in a fringe and obtain a tiling.

The proof of Theorem 2 gives an optimal O(b2) time algorithm for finding a cover for
ARa,b with one defect. In general, however, it is computationally hard to determine if
ARa,b with an unknown number of defects has a cover.

Theorem 3. It is NP-complete to decide whether ARa,b with an unbounded number of
defects has a cover.

Proof Sketch. The reduction is from tiling an arbitrary region R with defects. The idea
is to embed R into ARa,b for some sufficiently large n and insert defects in ARa,b in a
way that surrounds R. ut



(a) ARa,b with four de-
fects

(b) Tiling pattern

Fig. 9: Tiling of ARa,b with four defects.

Fig. 10: I-Tromino to L-Tromino transformation using 180-Trominoes.

4 Tiling with 180-Trominos

In this section we study tilings of arbitrary regions using only 180-trominoes. With no
loss of generality, we will only consider right-oriented 180-trominoes.

4.1 Hardness

It is easy to see that even when restricted to 180-trominoes, deciding the existence of a
tiling of an arbitrary region is still hard.

Theorem 4. 180-TROMINO is NP-complete.

Proof Sketch. The proof uses the same gadgets for the reduction for I-Trominoes from
the 1-in-3 Graph Orientation Problem of Horiyama et al. [5]. Take any gadget of Horiyama
et al. [5] and partition each cell into 4 new cells. Thus, each I-tromino is transformed in
a new 2× 6 or 6× 2 region (depending on the orientation of the I-tromino) which can be
covered with four 180-trominoes as in Fig 10. If a gadget is covered with I-trominoes, then
the same gadget, after partitioning each cell into four new cells, can also be covered with
180-trominoes. To see the other direction of this implication, we exhaustively examined
all possible ways to cover each 4-cell-divided gadget with L-trominoes, and observed that
each gadget with its original cells can also be covered with I-trominoes (we omit the
details here due to lack of space). ut

Theorem 4 also implies that the Triangular Trihex Tiling Problem of Conway and
Lagarias [2] is NP-complete.

It is natural to think along these lines about tiling the Aztec rectangle (and hence,
Aztec diamond) with 180-trominoes. However, we show that it is impossible.



Fig. 11: Covering of an Aztec rectangle with right-oriented trominoes.

Fig. 12: Forbidden polyominoes. All 180◦ rotations, reflections and shear transformations
are also forbidden polyominoes.

Theorem 5. ARa,b does not have a 180-cover.

Proof. Consider the southwestern side of any Aztec rectangle as in Fig.11 and pick any
one of the marked cells, say the cell at coordinate (c, d). There are only two ways to
cover that cell with a right-oriented tromino. With one tromino we can cover the cells
with coordinates (c, d), (c, d + 1) and (c + 1, d + 1), whereas with the other tromino we
can cover the cells (c, d), (c + 1, d) and (c + 1, d + 1). In either case the cells at (c, d) and
(c + 1, d + 1) are always covered, and depending on which tromino is chosen either the
cell at (c, d + 1) or (c + 1, d) is covered. Therefore, if we cover the entire bottom-left side
of an Aztec rectangle, there will always be a cell at (c, d + 1) or (c + 1, d) that cannot be
covered. Note that any reversed fringe that is on top of the bottom-left side of any Aztec
rectangle can be covered with 180-trominoes if it has one defect.

Corollary 3. AD(n) does not have a 180-cover.

4.2 Efficient Tilings

In this section we identify a sufficient condition for a region to have an efficient algorithm
that decides the existence of a 180-cover.

Theorem 6. If a region R does not contain any of the forbidden polyominoes of Fig.12
as a subregion, then there exists a polynomial-time algorithm that decides whether R has
a 180-cover.

For the remaining of this section we present a proof of Theorem 6. Remember that,
with no loss of generality, we only consider right-oriented trominoes. Given a region R we
construct a graph GR, which we call the region graph of R, as follows. For each cell (a, b)



(a) Region R (b) Region graph GR

Fig. 13: Example of a region graph construction.

that is not a defect there is a vertex vab. There is an edge for each pair of adjacent cells
and for each pair vab and v(a+1)(b+1). Note that this reduction is one-to-one. We present
an example in Fig.13.

From the region graph GR we construct a new graph IR which we call an intersection
graph and is constructed as follows. For each triangle in GR there is a vertex t and there
is an edge between vertices ti and tj if the corresponding triangles share a vertex in GR;
for example, the intersection graph for Fig.13 is a triangle, because all triangles in the
region graph share at least one vertex.

Lemma 4. For any region R with a fixed number of defects, the maximum number of
180-trominoes that fit in R equals the size of a maximum independent set in IR.

Proof. Let k be the maximum number of tiles that fit in R and let S be a maximum
independent set in the intersection graph IR. We claim that |S| = k.

Each triangle in the region graph GR correspond to a position where a 180-tile can
fit. If k is the maximum number tiles that can fit in R, then there exist k triangles in
GR, denoted T , that do not share any common vertex. Each triangle in T corresponds to
a vertex in IR and since none of the triangles in T share a common vertex, T defines an
independent set in IR and k ≤ |S|.

To prove that |S| = k suppose by contradiction that T is not a maximum independent
set of IR, that is, k < |S|. Since S is an independent set in IR, there are |S| triangles in
GR that do not share a common vertex. Thus, we can fit |S| 180-trominos in R, which is
a contradiction because k < |S|. ut

The idea for a proof of Theorem 6 is to construct a polynomial time algorithm that
decides the existence of a 180-cover by deciding if a maximum independent set in IR
equals the number of cells of R divided by 3, which agrees with the number of trominoes
covering R. Deciding the existence of a maximum independent set of a given size is a well-
known NP-complete problem, nevertheless, it is known from the works of Minty [7], Sbihi
[11] and Nakamura and Tamura [9] that for claw-free graphs3 finding independent sets
can be done in polynomial time. Hence, if IR is claw-free, then we can use a polynomial
time algorithm for finding independent sets to decide the existence of a 180-cover. If IR
has a claw, however, each claw will give one of the forbidden polyominoes.

In Lemma 5 below we show that 180-TROMINO is polynomial time reducible to
deciding independent sets, which allow us to construct algorithms for 180-TROMINO
using known algorithms for deciding independent sets. Then in Lemma 6 we show that if
IR has a claw, then that claw corresponds to a forbidden polyomino in the region R.

Lemma 5. There is a many-one polynomial-time reduction from 180-TROMINO to the
problem of deciding existence of an independent set of a given size.

3 A graph is claw-free if it does not have K1,3 (a claw) as an induced subgraph.



Proof. First the reduction constructs the region graph GR and the intersection graph IR.
If the size of the largest independent set equals the number of cells of R divided by 3,
then output “yes” because R has a 180-cover; otherwise output “no” because R does not
have a 180-cover.

Suppose R has a 180-cover. If n is the number of cells in R, then the number of tiles
in the 180-cover is n/3. By Lemma 4, the largest independent set in IR equals n/3.

Now suppose R does not have a 180-cover. If n is the number of cells in R, then n/3
is not equal the maximum number of tiles that can fit in R. Thus, by Lemma 4, it holds
that n/3 is not equal the size of the largest independent set in IR. ut

Lemma 6. If IR has a claw, then R has at least one forbidden polyomino.

Proof Sketch. For any claw in IR there is a vertex of degree 3 and three vertices of degree
1, and each vertex in IR corresponds to a triangle in the region graph GR. We refer to the
triangle that corresponds to the degree 3 vertex as the central triangle and each degree
1 triangle is called an adjacent triangle. Thus, to obtain all forbidden polyominoes, we
look at all posible ways to connect (by the vertices) each adjacent triangle to the central
triangle in such a way that each adjacent triangle only connects to the central triangle
in a single vertex and it is not connected to any other adjacent triangle; otherwise, if an
adjacent triangle connects with two vertices of the central triangle or any two adjacent
vertices connects with one another, then the induced graph does not corresponds to a
claw. By exhaustively enumerating all possibilities, we can extract all polyominoes that
correspond to claws in IR. Then we partition this set of polyominoes in five equivalence
classes, where two polyominoes are in the same class if and only if one can be obtained
from the other by a 180◦ rotation, a reflection or shear transformation (we omit some
details here due to lack of space). ut

Lemmas 5 and 6 complete the proof of Theorem 6.

5 I-Trominoes vs L-Trominoes

In Section 4 we saw that any gadget of Horiyama et al. [5] can be covered with I-trominoes
if and only if the same gadget, after partitioning each cell into four new cells, can be
covered with L-trominoes. In general, if R is any region and R� is the region R where
each cell is partitioned into four cells, we have that if R can be covered with I-trominoes,
then R� can be covered with L-trominoes. We do not know, however, if the other way
of this implication holds in the general case. The following theorem partly answers this
open problem.

Theorem 7. Let R be a connected region of size n. The region R� has an L-Tromino
cover if and only if 3 divides n.

Proof Sketch. It is clear that if R� has an L-Tromino cover, then 3 divides n. Now
suppose that 3 divides n. Say that a connected region R with n vertices is detachable if
there exist a way to separate R in two connected subregions of sizes n1 and n2 such that
3 divides n1 and 3 divides n2. We can show that if R is not detachable, then R� can
always be covered with L-Trominoes.

In order to construct a tiling for R� we first decompose R by recursively detaching it
in connected subregions until all subregions obtained this way are not detachable. Since



each subregion is not detachable, we construct an L-Tromino cover for each subregion and
then join them to obtain a cover for R�. We omit details due to the lack of space. ut

The proof of Theorem 7 gives an efficient algorithm to find covers for any R�.

6 Concluding Remarks and Open Problems

In this work we studied the computational hardness of tiling arbitrary regions with
L-trominoes. We showed restrictions to the problem that keeps it computationally in-
tractable and identified concrete instances where an efficient tiling exists.

We conclude this paper with some open problems that we consider challenging and
that we believe will fuel future research in the subject.

1. Hardness of tiling the Aztec rectangle with a given number of defects. In Section 3
we saw that an Aztec rectangle with 0 or 1 defects can be covered with L-trominoes
in polynomial time, whereas in general the problem is NP-complete when the Aztec
rectangle has an unknown number of defects; with 2 + 3k, for every k, an Aztec
rectangle cannot be covered because the number of cells is not divisible by 3. It is
open if there exist a polynomial time algorithm for deciding a tiling for an Aztec
rectangle with a given number of defects.

2. Tiling of orthogonally-convex regions. In this work we showed several instances where
a tiling can be found in polynomial time. In general, it is open if an orthogonally-
convex region with no defects can be covered in polynomial time or if it is NP-complete
to decide if a tiling exists.
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