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Abstract. Recently, the concept of parity bias in integer partitions has been studied by several
authors. We continue this study here, but for non-unitary partitions (namely, partitions with
parts greater than 1). We prove analogous results for these restricted partitions as those that
have been obtained by Kim, Kim and Lovejoy (2020) and Kim and Kim (2021). We also look
at inequalities between two classes of partitions studied by Andrews (2019) where the parts are
separated by parity (either all odd parts are smaller than all even parts or vice versa).

1. Introduction

A partition λ = (λ1, λ2, . . . , λk) of n is a non-increasing sequence of natural numbers, λ1 ≥
λ2 ≥ · · · ≥ λk such that λ1 + λ2 + · · · + λk = n. Here, each λi is called a part of the partition
λ of n (written as λ ⊢ n) and the length of the partition, denoted by ℓ(λ) is k. Partitions have
been studied since the time of Euler, and continues to be a serious topic for ongoing research
in several directions. A good introduction to the subject is given in the masterly treatment of
Andrews [And98].

In the theory of partitions, inequalities arising between two classes of partitions have a long
tradition of study, see for instance work in this direction by Alder [Ald48], Andrews [And13],
McLaughlin [ML16], Chern, Fu, and Tang [CFT18] and Berkovich and Uncu [BU19], among
others. In 2020, Kim, Kim and Lovejoy [KKL20] introduced a phenomenon in integer partitions
called parity bias, wherein the number of partitions of n with more odd parts (denoted by po(n))
are more in number than the number of partitions of n with more even parts (denoted by pe(n)).
That is, they proved for n ̸= 2, po(n) > pe(n). They also conjectured a similar inequality for
partitions with only distinct parts. For n > 19, they conjectured that do(n) > de(n), where
do(n) (resp. de(n)) denotes the number of partitions of n with distinct parts with more odd
parts (resp. even parts) than even parts (resp. odd parts). Further generalizations of the results
of Kim, Kim and Lovejoy [KKL20] have been found by Kim and Kim [KK21] and Chern [Che22].
Most of the proofs of the results in these papers use techniques arising from q-series methods.
The first two authors, in collaboration with Banerjee, Bhattacharjee and Dastidar [BBD+22]

proved both the above quoted result and conjecture of Kim, Kim and Lovejoy [KK21] using
combinatorial means. In addition, they proved several more results on parity biases of partitions
with restrictions on the set of parts. For a nonempty set S ⊊ Z≥0, define

P S
e (n) := {λ ∈ Pe(n) : λi /∈ S},

and P S
o (n) := {λ ∈ Po(n) : λi /∈ S},

where the set Pe(n) (resp. Po(n)) consists of all partitions of n with more even parts (resp. odd
parts) than odd parts (resp. even parts). Let us denote the number of partitions of P S

e (n) (resp.
P S
o (n)) by pSe (n) (resp. p

S
o (n)). Banerjee et al. [BBD+22] proved the following result.
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Theorem 1.1 (Banerjee et al., [BBD+22]). For positive integers n, the following inequalities
are true (the range is given in the brackets),

p{1}o (n) < p{1}e (n), (n > 7), (1)

p{2}o (n) > p{2}e (n), (n ≥ 1), (2)

and
p{1,2}o (n) > p{1,2}e (n), (n > 8). (3)

All of the proofs of the above inequalities were by using combinatorial techniques. Although
they do not use this term, but partitions where the part 1 does not appear are called non-unitary
partitions and we will use this terminology in this paper.

The primary goal of this paper is to use analytical techniques and prove results of the type
proved by Banerjee et al., that is about parity biases in partitions with certain restrictions on its
allowed parts. We reprove the inequality (1) using analytical techniques, as well as prove results
in a similar setup for the biases discussed in the work of Kim and Kim [KK21]. We further
look at some simply derived results on biases in partitions with a restriction on the size of the
minimum part as well as on parity of the number of parts of a given parity. Our techniques
can also be used to prove partition inequalities of the type where the number of partitions of
a certain class of partitions are more than another class. This is explored for two classes of
partitions studied by Andrews [And19] where the parts are separated by parity, where either all
odd parts are smaller than all even parts or vice versa.

The paper is structured as follows: in Section 2 we state our main results, namely on biases
in ordinary non-unitary partitions, in Section 3 we prove results on biases in partitions with
restrictions on the smallest part, in Section 4 we look at inequalities on partitions with parts
separated by parity. Finally we close the paper with some concluding remarks in Section 5.

2. Biases in Ordinary Non-Unitary Partitions

Using analytical techniques we will give a proof of following result which was proved by
Banerjee et. al. [BBD+22] combinatorially. We modify the notation a bit and let qe(n) (resp.
qo(n)) be the number of non-unitary partitions of n where the number of even (resp. odd) parts
are more than the number of odd (resp. even) parts.

Theorem 2.1 (Theorem 1.5, [BBD+22]). For all positive integers n ≥ 8, we have

qo(n) < qe(n).

Let pj,k,m(n) be the number of partitions of n such that there are more parts congruent to j
modulo m than parts congruent to k modulo m, for m ≥ 2. Then, Kim and Kim [KK21] proved
that for all positive integers n ≥ m2 −m+ 1, we have

p1,0,m(n) > p0,1,m(n).

Let us now denote by qj,k,m(n) the number of non-unitary partitions of n such that there are
more parts congruent to j modulo m than parts congruent to k modulo m, for m > 2. Then,
we have the following result.

Theorem 2.2. For n ≥ 4m+ 3, we have

q0,1,m(n) > q1,0,m(n)

We need some preliminaries before we can prove the above results. We use the standard
q-series notation

(a)n = (a; q)n =
n∏

k=1

(1− aqk−1), |q| < 1,
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and

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n.

Also, recall Heine’s transformation [GR04, Appendix III.1], which says for |z|, |q|, |b| ≤ 1, we
have ∑

n≥0

(a)n(b)n
(q)n(c)n

zn =
(b)∞(az)∞
(c)∞(z)∞

∑
n≥0

(z)n(c/b)n
(q)n(az)n

bn. (4)

By appropriately iterating Heine’s transformation, we obtain [GR04, Appendix III.3] what is
sometimes called the q-analogue of Euler’s transformation, which says that for |z|, |abz

c
| ≤ 1, we

have ∑
n≥0

(a)n(b)n
(q)n(c)n

zn =
(abz/c)∞
(z)∞

∑
n≥0

(c/a)n(c/b)n
(q)n(c)n

(abz/c)n. (5)

We also recall an identity of Sylvester [SF82, p. 281]: for |q| ≤ 1, we have

(−xq)∞ =
∑
n≥0

(−xq)n
(q)n

(1 + xq2n+1)xnqn(3n+1)/2. (6)

By standard combinatorial arguments, we have that
qbn

(q2; q2)n
is the generating function for

partitions with exactly n odd parts with the minimum odd part being at least b, as well as it
is the generating function for partitions with exactly n even parts with the minimum even part
being at least b. We will use this in the proof below without commentary.

Proof of Theorem 2.1. Let Po(q) (resp. Pe(q)) be the generating functions of qo(n) (resp. qe(n).
Then, we have

Po(q) =
∑
n≥0

q3n

(q2; q2)2n
−

∑
n≥0

q5n

(q2; q2)2n
= q3 + q5 + q6 + q7 + 2q8 · · · ,

and,

Pe(q) =
1

(q2; q)∞
−

∑
n≥0

q3n

(q2; q2)2n
= q2 + 2q4 + 3q6 + q7 + 5q8 · · · .

Substituting c = q4, a, b → 0, z = q3, q → q2 in equation (5) we get

Po(q) =
∑
n≥1

q3n

(q2; q2)2n
(1− q2n)

=
1

(1− q2)

∑
n≥1

q3n

(q4; q2)n−1(q2; q2)n−1

=
q3

(1− q2)

∑
n≥0

q3n

(q4; q2)n(q2; q2)n

=
1

(q3; q2)∞

∑
n≥0

q2n
2+5n+3

(q2; q2)n+1(q2; q2)n
=

1

(q3; q2)∞

∑
n≥1

q2n
2+n

(q2; q2)n(q2; q2)n−1

=
1

(q3; q2)∞

∑
n≥1

q2n
2+n

(q2; q2)2n
(1− q2n).
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Substituting c = q2, a, b → 0, z = q3, q → q2 in equation (5) we get

Pe(q) =
1

(q3; q2)∞

1

(q2; q2)∞
−
∑
n≥0

q3n

(q2; q2)2n

=
1

(q3; q2)∞

∑
n≥0

q2n
2

(q2; q2)2n
− 1

(q3; q2)∞

∑
n≥0

q2n
2+3n

(q2; q2)2n

=
1

(q3; q2)∞

∑
n≥1

q2n
2

(q2; q2)2n
(1− q3n).

Now,

Pe(q)− Po(q) =
1

(q3; q2)∞

∑
n≥1

q2n
2

(q2; q2)2n
(1− qn).

Clearly, for the summands from n = 2 onward the coefficients are positive, because if n is
even, then 1−qn will be cancelled by a factor of (q2; q2)n and if n is odd, then it will be cancelled
by a factor of (q3; q2)∞.

For, n = 1, we do the following. Put x = 1 in equation (6) to get the following

q3 + q5 +
1

(q3; q2)∞

q2(1− q)

(1− q2)2
= q3(1 + q2) +

q2(1− q)2

(1− q2)2
(−q)∞

= q3(1 + q2) +
q2

(1 + q)2

∑
n≥0

(−q)n
(q)n

(1 + q2n+1)q
3n2+n

2

= q3(1 + q2) +
q2

(1 + q)
+

q4(1 + q3)

(1− q2)

+
q2

(1 + q)2

∑
n≥2

(−q)n
(q)n

(1 + q2n+1)q
3n2+n

2

=
q2(1 + q2)

(1− q2)
+

q2

(1 + q)2

∑
n≥2

(−q)n
(q)n

(1 + q2n+1)q
3n2+n

2 ,

which gives us

1

(q3; q2)∞

q2(1− q)

(1− q2)2
= −q3 − q5 +

q2(1 + q2)

(1− q2)
+

q2

1− q2

∑
n≥2

(−q2)n−1

(q2)n−1

(1 + q2n+1)q
3n2+n

2 .

We see that the coefficients for all terms are nonnegative except for q3 and q5. The terms of
the expansion of the third summand of the RHS consists of terms of the form q2i for all i ∈ N .
For n = 2 the fourth summand of the RHS gives a series where the terms are of the form q2i+1

for all i ∈ N and i ≥ 4. For all n > 2 the minimum power of q in the expansion of the fourth
term of RHS is greater than 9. Also, for all n > 1 the minimum power of q in the expansion
of Pe(q) − Po(q) is greater than or equal to 8. So, in each case the coefficient of q7 is 0. This
completes the proof. □

Proof of Theorem 2.2. We start by acknowledging the fact that
qbn

(qm; qm)n
is the generating func-

tion with partitions into n parts congruent to b (mod m). Let P1,0,m(q) (resp. P0,1m(q)) be the
generating functions of q1,0,m(n) (resp. q0,1,m(n)). Then, we have

P1,0,m(q) =
(qm+1, qm; qm)∞

(q2; q)∞

∑
n≥0

q(m+1)n

(qm; qm)2n
− (qm+1, qm; qm)∞

(q2; q)∞

∑
n≥0

q(m+1)n+mn

(qm; qm)2n
,
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and

P0,1,m(q) =
1

(q2; q)∞
− (qm+1, qm; qm)∞

(q2; q)∞

∑
n≥0

q(m+1)n

(qm; qm)2n
.

Now,

P1,0,m(q) =
(qm+1, qm; qm)∞

(q2; q)∞

∑
n≥0

q(m+1)n

(qm; qm)2n
(1− qmn)

=
(qm+1, qm; qm)∞

(q2; q)∞

∑
n≥1

q(m+1)n

(qm; qm)n(qm; qm)n−1

=
(qm+1, qm; qm)∞

(q2; q)∞

qm+1

(1− qm)

∑
n≥0

q(m+1)n

(qm, q2m; qm)n

(by substituting, q → qm, a, b → 0, c → q2m and z → qm+1 in equation (5), we get)

=
(qm; qm)∞
(q2; q)∞

qm+1

(1− qm)

∑
n≥0

qmn2+2mn+n

(qm, q2m; qm)n

=
(qm; qm)∞
(q2; q)∞

∑
n≥1

qmn2+n(1− qmn)

(qm; qm)2n
. (7)

Similarly, we have

P0,1,m(q) =
(qm; qm)∞
(q2; q)∞

∑
n≥0

qmn2

(qm; qm)2n
− (qm; qm)∞

(q2; q)∞

∑
n≥0

qmn2+(m+1)n

(qm; qm)2n

=
(qm; qm)∞
(q2; q)∞

∑
n≥0

qmn2

(qm; qm)2n
(1− q(m+1)n)

=
(qm; qm)∞
(q2; q)∞

∑
n≥1

qmn2

(qm; qm)2n
(1− q(m+1)n). (8)

From equations (7) and (8), we get

P0,1,m(q)− P1,0,m(q) =
(qm; qm)∞
(q2; q)∞

∑
n≥1

qmn2

(qm; qm)2n
(1− qn).

From Kim and Kim [KK21, Lemma 2.1], we see that the above difference has nonnegative

coefficients for all qk with k > 2m + 1. The summand n = 2 is
(qm; qm)∞q4m

(q3; q)∞(qm; qm)22
. This shows

that coefficients of qk are positive for k ≥ 4m+ 3. In fact, the coefficient of q4m is also positive.
So, we have our result. □

3. Further Biases in Restricted Partitions

The following results can also be proved using similar analytical techniques as in the proofs
in the previous section.

Theorem 3.1. Let the minimum part for each partition of n be m and et n ≥ 2m be an even
number. Denote by Eme(n) (resp. Ome(n)) the number of partitions of n with an even number
of odd and even parts, where the number of even parts (resp. odd parts) is more than the number
of odd parts (resp. even parts). Then, for all n, we have

Ome(n) < Eme(n), if m is even,
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and,

Ome(n) > Eme(n), if m is odd.

Proof. Let the generating function of Eme(n) (resp. Ome(n)) be Eme(q) (resp. Ome(q)).
Case I: If m is odd, say m = 2b− 1 for some b ∈ Z. We have,

Eme(q) =
∑
n≥2

n is even

Eme(n)q
n =

∑
n≥2

n is even

q2bn

(q2; q2)n

 n−2∑
k=0

k is even

q(2b−1)k

(q2; q2)k

 ,

and,

Ome(q) =
∑
n≥2

n is even

Ome(n)q
n =

∑
n≥2

n is even

q(2b−1)n

(q2; q2)n

 n−2∑
k=0

k is even

q2bk

(q2; q2)k

 .

Now,

Ome(q)− Eme(q) =
∑
n≥2

n is even

q(2b−1)n

(q2; q2)n

 n−2∑
k=0

k is even

q2bk

(q2; q2)k
(1− qn−k)

 .

which clearly has non negative coefficients. This completes the proof of Case I.
Case II: If m is even, say m = 2c for some c ∈ Z. Then, we have

Eme(q) =
∑
n≥2

n is even

q2cn

(q2; q2)n

 n−2∑
k=0

k is even

q(2c−1)k

(q2; q2)k

 ,

and,

Ome(q) =
∑
n≥2

n is even

q(2c+1)n

(q2; q2)n

 n−2∑
k=0

k is even

q2ck

(q2; q2)k

 .

Now,

Eme(q)−Ome(q) =
∑
n≥2

n is even

q(2c)n

(q2; q2)n

 n−2∑
k=0

k is even

q(2c+1)k

(q2; q2)k
(1− qn−k)

 ,

which clearly has positive coefficients and it can be seen that the minimum power of q is 2m. □

Theorem 3.2. Let the minimum part for each partition of n be m and let n ≥ m be an odd
number. Denote by Emo(n) (resp. Omo(n)) the number of partitions of n with odd number of
even and odd parts, where the number of even parts (resp. odd parts) is more than the number
of odd parts (resp. even parts). Then, we have

Omo(n) > Emo(n), if m is odd,

and,

Omo(n) < Emo(n), if m is even.

The proof is similar to the proof of Theorem 3.1, so we leave it to the reader.
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4. Inequalities between Partitions with Parts Separated by Parity

Andrews [And18, And19] studied partitions in which parts of a given parity are all smaller
than those of the other parity, and proved several interesting results, which have been studied
by other authors as well. In this short section we look at some inequalities between two of these
classes of partitions that were studied by Andrews. We define,

P ou
eu (n) := Set of partitions of n in which each even part is less than each odd part.

P eu
ou (n) := Set of partitions of n in which each odd part is less than each even part.

Again, let us denote the cardinalities of these two sets by poueu(n) and peuou(n) respectively. We get
the following two generating functions from Andrews [And19].

P ou
eu (q) :=

∑
n≥0

poueu(n)q
n =

1

(1− q)(q2; q2)∞
,

and P eu
ou (q) :=

∑
n≥0

peuou(n)q
n =

1

1− q

(
1

(q; q2)∞
− 1

(q2; q2)∞

)
.

Note that the set P ou
eu (n) includes the partitions with all parts even or odd. But P eu

ou (n) does
not include the partitions with all parts even.

Banerjee, Bhattacharjee and Dastidar (via a private communication to the second author)
proved the following result combinatorially.

Theorem 4.1. For all n > 6, we have

peuou(n) > poueu(n).

For the sake of completeness, we give a proof of this result (which is different from that of
Banerjee, Bhattacharjee and Dastidar) a little later.

Again, we look at non-unitary versions of these types of partitions. Let us denote by Qou
eu(n)

and Qeu
ou(n) the set of non-unitary partitions which are in the sets P ou

eu (n) and P eu
ou (n) respectively.

Let us denote the cardinalities of these two sets by qoueu(n) and qeuou(n) respectively. If 1 is a part
in any partition in any partition inside P ou

eu (n), then no even part is there in that partition. So,
we get the following generating function.

Qou
eu(q) :=

∑
n≥0

qoueu(n)q
n =

1

(1− q)(q2; q2)∞
− q

(q; q2)∞
.

If 1 is not a part in any partition inside P eu
ou (n), then the least odd part of that partition is

greater than or equal to 3. So, in any case the partition can not contain 2 as a part. Therefore,
we get the following generating function (for details see Andrews [And19].)

Qeu
ou(q) :=

∑
n≥0

qeuou(n)q
n =

∑
n≥0

q2n+3

(q3; q2)n+1(q2n+4; q2)∞

=
q

(q2; q2)∞

(∑
n≥0

q2n(q2; q2)n
(q3; q2)n

− 1

)
=

1

(q; q2)∞
− q + 1

(q2; q2)∞
.

We now have the following result.

Theorem 4.2. For all n > 3, we have

qeuou(n) < qoueu(n).
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Before proving this result, we need some auxillary identities. Due to Euler, we know [And98,
p. 19]

1

(a; q)∞
=

∑
n≥0

an

(q; q)n
.

Therefore,
1

(q; q2)∞
=

∑
n≥0

qn

(q2; q2)n
=

∑
n≥0

qn

(−q)n(q)n
,

and
1

(q2; q2)∞
=

∑
n≥0

q2n

(q2; q2)n
=

∑
n≥0

q2n

(−q)n(q)n
.

Here (and afterwards) we use the shorthand notation (a)n := (a; q)n and (a)∞ = (a; q)∞.
Now, Substituting c = −q, a, b → 0, z = q in equation (4) we get∑

n≥0

qn

(−q)n(q)n
=

1

(−q)∞(q)∞

∑
n≥0

q
n2+n

2 .

Again, substituting c = −q, a, b → 0, z = q2 in equation (4) we get∑
n≥0

q2n

(−q)n(q)n
=

1

(−q)∞(q)∞

∑
n≥0

(1− qn+1)q
n2+n

2 .

We use these identities in the remainder of this section without commentary.

Proof of Theorem 4.2. We have,

Qou
eu(q)−Qeu

ou(q) =
2− q2

1− q
· 1

(q2; q2)∞
− 1 + q

(q; q2)∞
=

∑
n≥0

2− q2

1− q
· q2n

(q2; q2)n
−
∑
n≥0

(1 + q)qn

(q2; q2)n

=
1

(q2; q2)∞

∑
n≥0

(
(2− q2)(1− qn+1)

1− q
− (1 + q)

)
q

n2+n
2

=
1

(q2; q2)∞

(∑
n≥0

(1 + q + q2 + · · ·+ qn)q
n(n+1)

2 −
∑
n≥0

(1 + q)q
(n+1)(n+2)

2

)
=

1

(q2; q2)∞

(
1 +

∑
n≥0

(1 + q + q2 + · · ·+ qn+1)q
(n+1)(n+2)

2 −
∑
n≥0

(1 + q)q
(n+1)(n+2)

2

)
=

1

(q2; q2)∞

(
1 +

∑
n≥1

(q2 + · · ·+ qn+1)q
(n+1)(n+2)

2

)
.

Hence, coefficients of qn in Qou
eu(q)−Qeu

ou(q) are positive for all n > 3. □

We end this section by giving a proof of Theorem 4.1.

Proof of Theorem 4.1. We have,

P eu
ou (q)− P ou

eu (q) =
1

1− q

(
1

(q; q2)∞
− 2

(q2; q2)∞

)
=

1

(1− q)(q2; q2)∞

(
(q2; q2)2∞
(q; q)∞

− 2

)
=

1

(1− q)(q2; q2)∞

(∑
n≥0

q
n2+n

2 − 2

)
,

where the last equality follows from [And98, p. 23].
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We now note that the products on the RHS can be rewritten as

(1 + q + q2 + q3 + · · · )
∞∏
i=1

(1 + q2i + q4i + q6i + · · · )(−1 + q + q3 + q6 + q10 + q15 + · · · ).

Let (1 + q + q2 + q3 + · · · )
∏∞

i=1(1 + q2i + q4i + q6i + · · · ) =
∑
n≥0

anq
n. Then we can prove that

a2n = a2n+1, for all n ≥ 0,

and the series begins as

1 + q + 2q2 + 2q3 + 4q4 + 4q5 + 7q6 + 7q7 + · · · ,

where the coefficients of qn are clearly monotonically non-decreasing. Multiplying this with
(−1+q+q3+q6+q10+q15+· · · ) now shows that indeed the coefficients of q2n+1 in P eu

ou (q)−P ou
eu (q)

are nonnegative for n ≥ 1 (since each instance of a2n+1q
2n+1 multiplied with −1 will be cancelled

out by a2nq
2n multiplied with q).

Let
∞∏
i=1

(1 + q2i + q4i + q6i + · · · ) =
∑
n≥0

b2nq
2n, where b2n is the number of partitions of 2n with

all parts even. To prove that the coefficients of q2n in P eu
ou (q)−P ou

eu (q) are nonnegative for n ≥ 4,
we have to prove that

a2n−1 + a2n−3 > a2n,

which means

a2n−2 + a2n−3 > a2n.

It is easy to see that

a2n =
n∑

i=0

b2i, and a2n−3 =
n−2∑
i=0

b2i.

This implies,

a2n−2 + a2n−3 − a2n =
n−2∑
i=0

b2i − b2n.

So, to complete the proof, it is enough to show that

n−2∑
i=0

b2i − b2n > 0. (9)

This is not difficult to see combinatorially. We define the set P̃ (2n) to be the set of partitions
of 2n into even parts. Let Ã(2n) = P̃ (2n) \ {(2n), (2 + 2+ · · ·+2)} Then we define an injection

φ : Ã(2n) →
n−2⋃
i=1

P̃ (2i) by mapping any partition λ in Ã(2n) to a partition in P̃ (2i) for n− 2 ≤

i ≥ 1 by removing the largest part of λ. And we map (2n) to (2n− 4), and (2 + 2 + · · ·+ 2) to
(2n−6), which is possible for all n ≥ 7. This proves the inequality (9) for n ≥ 7. So, coefficients
of even powers of q in P eu

ou (q)−P ou
eu (q) are positive for all n ≥ 14. Verifying for the smaller even

powers of q, we get the theorem. □

Remark 4.2.1. In fact, it is possible to prove combinatorially that, for all n ≥ 7, we have

b2n−4 + b2n−6 + b2n−8 + b2n−10 > b2n.

This will give an alternate justification of the previous proof without invoking the map φ.
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5. Concluding Remarks

There are several natural questions that arise from our study, including several avenues for
further research. We list below a selection of such questions and comments.

(1) Experiments suggest that the inequality in Theorem 2.1 can be strengthened. We con-
jecture that, for all n > 9 we have

3qo(n) < 2qe(n).

In fact, it is easy to see that this is true for all even n, since we get

2Pe(q)− 3Po(q) =
1

(q3; q2)∞

∑
n≥1

q2n
2

(q2; q2)2n
(1− qn)2(2 + qn),

and when n is even then (1− qn)2 is cancelled by a factor of (q2; q2)2n.
(2) Chern [Che22, Theorem 1.3] has recently proved for m ≥ 2 and for integers a and b such

that 1 ≤ a < b ≤ m, we have

pa,b,m(n) ≥ pb,a,m(n),

thus generalizing the results of Kim and Kim [KK21]. Limited data suggests that this
inequality is reversed if we consider qj,k,m(n) instead of pj,k,m(n). It would be interesting
to get a unified proof of this observation.

(3) Kim, Kim and Lovejoy [KK21] and Kim and Kim [KK21] also study asymptotics of some
of their parity biases. It would be interesting to study such asymptotics for our cases as
well.

(4) All the proofs in this paper are analytical. It would be interesting to get combinatorial
proofs of some of these results.

(5) Analytical proofs of the inequalities (2) and (3) would also be of interest to see if we can
get more generalized results of a similar flavour.

(6) Alanazi and Nyirenda [AN21] and Chern [Che21] study some more classes of partitions
where the parts are separated by parity, following the work of Andrews [And19]. It would
be interesting to see if inequalities of the type proved in Theorems 4.1 and 4.2 can be
proved for these cases as well as for other classes studied by Andrews [And19].

(7) It appears that there is a lot of interesting (parity) biases to be unearthed for different
types of partition functions, a systematic study of such (parity) biases would also be of
interest.
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