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Abstract. Generalizing the concept of a perfect number is a Zumkeller or integer perfect num-
ber that was introduced by Zumkeller in 2003. The positive integer n is a Zumkeller number if its
divisors can be partitioned into two sets with the same sum, which will be σ(n)/2. Generalizing
even further, we call n a k-layered number if its divisors can be partitioned into k sets with equal
sum.

In this paper, we completely characterize Zumkeller numbers with two distinct prime factors
and give some bounds for prime factorization in case of Zumkeller numbers with more than two
distinct prime factors. We also characterize k-layered numbers with two distinct prime factors
and even k-layered numbers with more than two distinct odd prime factors. Some other results
concerning these numbers and their relationship with practical numbers and Harmonic mean
numbers are also discussed.

1. Introduction

Let n be a positive integer. The canonical decomposition of n as a product of primes can be
written as

n = pα1
1 · · · pαrr ,

where p1 < p2 < · · · < pr. As usual we shall denote the number of divisors of n by τ(n) and the
sum of the divisors by σ(n), so that

τ(n) = (α1 + 1)(α2 + 1) · · · (αr + 1)

and

σ(n) =
∑
d|n

d =

(
pα1+1
1 − 1

p1 − 1

)
· · ·
(
pαr+1
r − 1

pr − 1

)
.

The function σ(n) is frequently studied in connection with perfect numbers. A number n is
called a perfect number if σ(n) = 2n. Even perfect numbers have been studied and classified
since antiquity and we know from the work of Euclid and Euler that n is an even perfect number
if n = 2p−1(2p − 1) where both p and 2p − 1 are primes (see for instance the book of Hardy and
Wright [HW08]). However, to date no odd perfect number has been found nor is known to exist.

This tantalizing question of the existence of odd perfect numbers has motivated many math-
ematicians to look at generalizations which are hoped to shed light on the original problem (for
instance, see the second author’s joint work with Laugier and Sarmah [LSS16] and with Dutta
[DS19], and the references therein). One of these generalization is the concept of a Zumkeller
or integer perfect number that was introduced by Zumkeller in 2003. The positive integer n is a
Zumkeller number if its divisors can be partitioned into two sets with the same sum, which will
be σ(n)/2 (see the OEIS sequence A083207 for a few values). For example, 20 is a Zumkeller
number because its divisors, 1, 2, 4, 5, 10 and 20 can be partitioned in the two sets A = {1, 20}
and B = {2, 4, 5, 10} whose common sum is 21.
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Undoubtedly, one of the most important reasons for studying Zumkeller numbers is because
each perfect number is a Zumkeller number. Clearly, the necessary conditions for a positive
integer n to be a Zumkeller number are σ(n) ≥ 2n and σ(n) is even. Therefore, the number of
positive odd factors of n must be even. Peng and Bhaskara Rao [PBR13, Proposition 3] proved
that the necessary and sufficient condition for a positive integer n to be a Zumkeller number

is that the value of
σ(n)− 2n

2
must be either 0 or be a sum of distinct positive factors of n

excluding n itself. So, we see that every perfect number is Zumkeller.
In 2008 Clark et. al. [CDH+08], announced several results about Zumkeller, Half-Zumkeller

and practical numbers and made some conjectures. A positive integer n is said to be a Half-
Zumkeller number if the proper positive divisors of n can be partitioned into two disjoint parts so
that the sums of the two parts are equal. Also, n is said to be practical if all positive integers less
than n can be represented as sums of distinct factors of n. (See the OEIS sequences A246198 and
A005153 for the first few values of Half-Zumkeller and practical numbers respectively.) Bhakara
Rao and Peng [PBR13] provided a proof for the first conjectures of Clark et. al. [CDH+08], and
proved the second conjecture in some special cases. They also proved several other results and
posed a few open problems on Zumkeller numbers.

After the work of Bhaskar Rao and Peng [PBR13] there seems to be no further work on
Zumkeller numbers from a purely number-theoretic perspective until recently when Jokar [Jok19]
studied a generalization of Zumkeller numbers called k-layered numbers. A natural number n is
called a k-layered number if its divisors can be partitioned into k sets with equal sum. Clearly,
Zumkeller numbers are 2-layered and hence k-layered numbers are a proper generalization of
Zumkeller numbers.

The goal of the present paper is to remedy this situation and initiate once again the study
of Zumkeller numbers and its generalization. With this aim, we will characterize all Zumkeller
numbers with two distinct prime factors in Section 2, then we characterize all k-layered numbers
with two distinct prime factors as well as even k-layered numbers with two distinct odd prime
factors in Section 3, in Section 4.1 we prove several results connecting Zumkeller numbers with
harmonic mean numbers as well as prove some results about Zumkeller numbers with more than
two distinct prime factors, and finally we end the paper with some concluding remarks in Section
5. It is hoped that other mathematicians would find it fruitful to extend our results further.

2. Zumkeller numbers with two distinct prime factors

We have already stated that one of the necessary condition for a positive integer n be a
Zumkeller number is σ(n) ≥ 2n. For distinct odd prime numbers p1 and p2, it is impossible for

n = pα1p
β
2 to be a Zumkeller number, for any α, β ∈ N. Since if n = pα1p

β
2 be a Zumkeller number,

then we must have

σ(pα1p
β
2 ) =

(
pα+1
1 − 1

p1 − 1

)(
pβ+1
2 − 1

p2 − 1

)
≥ 2pα1p

β
2 ,

which leads to

(pα+1
1 − 1)(pβ+1

2 − 1) ≥ 2pα1p
β
2 (p1 − 1)(p2 − 1).

This gives us

pα1p
β
2 ((p1 − 2)(p2 − 2)− 2) + pα+1

1 + pβ+1
2 − 1 ≤ 0,

which is impossible (since (p1 − 2)(p2 − 2) ≥ 3). This gives us the following result.

Lemma 2.1. There is no Zumkeller number of the form pα1p
β
2 where p1 and p2 are distinct odd

primes and α and β are natural numbers.
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So, a Zumkeller number with two distinct prime factors must be even. We characterize all
such numbers in the remainder of this section. In the following, we always take α, β ∈ N and p
to be a prime unless otherwise mentioned. We first find necessary and sufficient conditions for a
positive integer n = 2αp to be a Zumkeller number and then we extend our results for n = 2αpβ.
It is easy to see each prime number p can be represented in the unique form

p = 1 + 2r1 + 2r2 + 2r3 + · · ·+ 2rl , (2.1)

where r1 < r2 < r3 < · · · < rl for some l. Alternatively, this is the base 2 representation of p. In
the remainder of this paper, we let θ(A) =

∑k
i=1 ai for a set A = {a1, a2, . . . , ak}. We are now

ready to prove our first results.

Theorem 2.2. Let p be a prime number of the form (2.1). The positive integer n = 2αp is a
Zumkeller number if and only if α ≥ rl.

Proof. Let n be a Zumkeller number and let the set of all positive divisors of n be

D = {1, 2, 22, . . . , 2α, p, 2p, 22p, . . . , 2αp}.
Put A = {2αp} and B = {p, 2p, . . . , 2α−1p}. We have

θ(B) = p+ 2p+ · · ·+ 2α−1p = p(1 + 2 + · · ·+ 2α−1) = p(2α − 1) = 2αp− p.
If rl > α, it is impossible to represent the prime number p as a sum of the elements in the
set C = {1, 2, 22, . . . , 2α}, so we cannot partition the set D into two disjoint sets since the set
which will contain 2αp will always have it’s sum of elements greater than the other. This is a
contradiction.

For the converse, let rl ≤ α, and n = 2αp. Consider A = {2αp}, B = {p, 2p, . . . , 2α−1p} and
C = {1, 2, 22, . . . , 2α}. Now,

σ(n)

2
− θ(B) =

σ(n)

2
− 2p(2α − 1)

2

=
2α+1p+ 2α+1 − p− 1− 2α+1p+ 2p

2

=
2α+1 + p− 1

2
= 2α +

p− 1

2
.

By substituting equation (2.1), we have

2α +
p− 1

2
= 2α + 2r1−1 + 2r2−1 + · · ·+ 2rl−1.

Since α ≥ rl, then, the set C must be contain the numbers 2r1−1, 2r2−1, . . . , 2rl−1 and 2α. Put

B′ = B ∪ {2α, 2r1−1, 2r2−1, · · · , 2rl−1}.
Clearly, θ(B′) = σ(n)/2. Now, we add the remaining elements of the set C into the set A, which
leads to θ(A) = σ(n)/2. So, we have partitioned the divisors of n = 2αp into two disjoint set A
and B with the same sum σ(n)/2. Hence, n is a Zumkeller number. �

Bhakara Rao and Peng [PBR13, Proposition 2] proved that the necessary condition for n to
be a Zumkeller number is σ(n) ≥ 2n. The following theorem, shows this condition is necessary
and sufficient for n = 2αp.

Theorem 2.3. Let p be a prime number. Then n = 2αp is a Zumkeller number if and only if
σ(n) ≥ 2n.

Proof. The necessary condition follows from Bhaskara Rao and Peng [PBR13, Proposition 2].
Let σ(n) ≥ 2n, then

σ(2αp) ≥ 2α+1p =⇒ (2α+1 − 1)(p+ 1) ≥ 2α+1p =⇒ 2α+1 ≥ p+ 1.
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Now, by substituting equation (2.1), we get

2α ≥ 1 + 2r1−1 + 2r2−1 + · · ·+ 2rl−1. (2.2)

By adding 2α to both side of the equation (2.2), we have

2α+1 ≥ 2α + 2r1−1 + 2r2−1 + · · ·+ 2rl−1 + 1.

Hence

σ(2α) ≥ 2α + 2r1−1 + 2r2−1 + · · ·+ 2rl−1.

Let D = {1, 2, 22, . . . , 2α, p, 2p, 22p, . . . , 2αp} be a set of all divisors of n = 2αp. Put A = {2αp},
B = {p, 2p, . . . , 2α−1p} and C = {1, 2, 22, . . . , 2α}. Obviously, θ(B) = 2αp− p and

σ(n)

2
− θ(B) = 2α + 2r1−1 + 2r2−1 + · · ·+ 2rl−1.

Now,
θ(C) ≥ 2α + 2r1−1 + 2r2−1 + · · ·+ 2rl−1,

and the set C contains all factors 2α, 2r1−1, 2r2−1, · · · , 2rl−1. Put

B′ = B ∪ {2α, 2r1−1, 2r2−1, · · · , 2rl−1}.
Hence, θ(B′) = σ(n)/2. Now, by adding the remaining elements of the set C into the set A, we
partitioned all divisors of n into two disjoint sets A and B′ with the same sum. Hence n is a
Zumkeller number. �

We can prove the result of Euclid - Euler as a corollary of our results.

Corollary 2.4 (Euclid - Euler). Let p = 1 + 2 + 22 + 23 + · · · + 2α be a prime number. Then
n = 2αp is a perfect number.

Corollary 2.5. Let 2α < p < 2α+1 be a prime number. Then n = 2αp is a Zumkeller number.

Both the corollaries follow directly from Theorem 2.2.
We can now look at the more general case when n = 2αpβ, where β > 0. The proofs in this

case are a bit more involved, and our main result of this section is now stated below.

Theorem 2.6. Let n = 2αpβ be a positive integer. Then n is a Zumkeller number if and only if
p ≤ 2α+1 − 1 and β is an odd number.

Proof. Obviously if n = 2αpβ is a Zumkeller number then σ(n) must be even. Clearly β must be
an odd number, since

σ(n) = σ(2αpβ) =
2α+1 − 1

2− 1
× (1 + p+ p2 + · · ·+ pβ)

is even, which means (1 + p+ · · ·+ pβ) must be even. Hence β must be an odd number.
It is sufficient to show p ≤ 2α+1 − 1. We have σ(n) ≥ 2n, then

(2α+1 − 1)

(
pβ+1 − 1

p− 1

)
≥ 2α+1pβ.

Hence
2α+1pβ − 2α+1 ≥ pβ+1 − 1.

After some simple manipulation, from the above inequality we get

2α+1 − 1 ≥ pβ+1 − pβ

pβ − 1
= p− pβ − p

pβ − 1
,

which leads to 2α+1 − 1 ≥ p.
Now, let β be an odd number and 2α+1−1 ≥ p. We shall prove that n is a Zumkeller number.
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Let D be the set of divisors of 2αp, and let D = A ∪ B be the Zumkeller partition for 2αp
as in the proof of Theorem 2.2. Using these sets, we create a new partitions for all divisors of
n = 2αpβ.

Let D′ be a set of all divisors n = 2αpβ and for each 1 ≤ i ≤ β − 1

2
consider Ai = p2iA and

Bi = p2iB. It is easy to see that

(A ∪B) ∪ (

β−1
2⋃
i=1

(Ai ∪Bi)) = D′.

Put A′ = A ∪A1 ∪ · · · ∪Ai and B′ = B ∪B1 ∪ · · · ∪Bi with 1 ≤ i ≤ β − 1

2
. Clearly the sets A′

and B′ are disjoint subsets of D′ such that D′ = A′ ∪B′ and θ(A′) = θ(B′). This completes our
proof. �

An easy corollary of the above result which connects it to Theorem 2.2 is the following.

Corollary 2.7. 2αp is a Zumkeller number if and only if 2αpβ is a Zumkeller number, where β
is an odd number.

Proof. Let 2αp be a Zumkeller number. Then Theorem 2.2 implies p ≤ 2α+1 − 1. Since β is an
odd number, we get 2αpβ is a Zumkeller number.

Conversely let 2αpβ be a Zumkeller number. Then Theorem 2.6 implies p ≤ 2α+1−1. Therefore
2αp is a Zumkeller number. �

The following fact from Bhaskara Rao and Peng [PBR13] and Clark et. al. [CDH+08] gives a
method of generating new Zumkeller numbers from a known Zumkeller number.

Lemma 2.8 (Bhaskara Rao - Peng). [PBR13, Theorem 4] If n is a Zumkeller number and p is
a prime with (n, p) = 1, then npl is Zumkeller for any positive integer l.

For 1 ≤ i ≤ `, let βi be odd numbers and let p1 = 2 < p2 = 3 < p3 = 5 < · · · be
the sequence of prime numbers. According to Lemma 2.8, we can generalize Theorem 2.6 for

each n = 2αpβ11 · · · p
β`
` since (2αpβii ,

∏`
j=1,i 6=j p

βj
j ) = 1. Before doing so, we need the following

consequence of Bertrand’s postulate, the proof of which is left for the reader.

Lemma 2.9. Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of prime numbers. Then
pi < 2i for each i > 1.

Theorem 2.10. Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of prime numbers. Then
2ipi is a Zumkeller number for each i > 1.

Proof. From the above lemma we get pi < 2i for each i > 1. Therefore pi < 2i+1 − 1 for each
i > 1. Theorem 2.2 implies 2ipi is a Zumkeller number for each i > 1. �

We can prove a result similar to Theorem 2.3 for the more general case, which is done below.

Theorem 2.11. Let n = 2αpβ be a positive integer. If β is odd, then n is a Zumkeller number
if and only if σ(n) ≥ 2n.

Proof. The necessary condition is trivial, as it has been remarked already that σ(n) ≥ 2n is a
necessary condition for any n to be a Zumkeller number.

Suppose n is not Zumkeller, then by Theorem 2.6 we have 2α+1 < p+1. Let, p = 2α+1−1+x,
for some positive integer x. Obviously x > 1 and we have

σ(n)− 2n =
(2α+1 − 1)(pβ+1 − 1)− 2α+1pβ(p− 1)

p− 1
.
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Now, (2α+1− 1)(pβ+1− 1)− 2α+1pβ(p− 1) = pβ(1− x) + (x− p). Since 1− x < 0 and x− p < 0,
the above expression is negative. Hence σ(n) < 2n.

Again let σ(n) < 2n and p = 2α+1 − 1 + x. Then pβ(1 − x) + (x − p) < 0. Which implies

pβ − p < xpβ − x, and therefore
(pβ−1 − 1)p

pβ − 1
< x. Therefore x is positive. which implies

p > 2α+1 − 1.
Hence p > 2α+1− 1 if and only if σ(n) < 2n. Therefore p ≤ 2α+1− 1 if and only if σ(n) ≥ 2n.

The proof is concluded by Theorem 2.6. �

We defer some discussion on Zumkeller numbers with more than two distinct prime factors to
Subsection 4.2.

3. Characterization of k-layered numbers

Recently, Jokar [Jok19] studied a further generalization of Zumkeller numbers which he called
k-layered numbers. A positive integer is said to be a k-layered number if its positive divisors can
be partitioned into k disjoint subsets of equal sum. Such a partition is then called a k-partition.
We can see immediately that Zumkeller numbers are 2-layered.

The aim of this section is to characterize all k-layered numbers with two distinct odd prime
divisors and extend some results to the more general cases. We shall use the facts that if n is a
k-layered number, then k|σ(n) and σ(n) ≥ kn.

Proposition 3.1. pα is not a k-layered number for any k ≥ 3 and for any prime p.

Proof. Let n = pα. Then σ(n) ≥ kn implies (p−1)(1−k) ≥ 0 after some algebraic manipulation.
Clearly p− 1 > 0, so 1 ≥ k which is not possible. �

Theorem 3.2. For any distinct primes p and q, pαqβ is not a k-layered number for any k ≥ 3.

Proof. Let n = pαqβ. Then σ(n) ≥ kn implies

(
pα − 1

pα(p− 1)
+ 1

)(
qβ − 1

qβ(q − 1)
+ 1

)
≥ k after

some algebraic manipulation. This gives us{
1

p− 1

(
1− 1

pα

)
+ 1

}{
1

q − 1

(
1− 1

qβ

)
+ 1

}
≥ k.

Since
1

p− 1

(
1− 1

pα

)
and

1

q − 1

(
1− 1

qβ

)
are less than 1, therefore k is at most 4.

Let k = 3, then σ(n) ≥ 3n implies

(
pα+1 − 1

p− 1

)(
qβ+1 − 1

q − 1

)
≥ 3pαqβ, which gives us

pαqβ(−2pq + 3p+ 3q − 3)− pα+1 − qβ+1 + 1 ≥ 0 (3.1)

Now let q = p+ x, where x ≥ 1. Then

−2pq + 3p+ 3q − 3 = x(3− 2p) + 2p(3− p)− 3.

Obviously this is negative for all p > 2. If p = 2, then −2pq + 3p + 3q − 3 = −x + 1. This is
negative for all x > 1. If p = 2 and x = 1, then −2pq + 3p + 3q − 3 = 0. So in all cases the
L.H.S. of the inequality (3.1) is negative. Thus we get a contradiction and k 6= 3.

The case for k = 4 is exactly similar and we can easily prove that it is not possible. �

One of the main results of this section is the following result.

Theorem 3.3. If n = 2αpq where α ≥ 1 and p and q are distinct odd primes, then n is not a
k-layered number for k > 3.

Furthermore, if k = 3 then n is a 3-layered number only when n = 15.2α with α ≥ 3 or when
n = 21.2α with α ≥ 5 and α is odd.
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Proof. We have, σ(n) ≥ kn implies

(2α+1 − 1)(p+ 1)(q + 1) ≥ k2αpq (3.2)

which gives us

(
2− 1

2α

)(
1 +

p+ q + 1

pq

)
≥ k. Since p and q are primes, so

p+ q + 1

pq
≤ 1.

Hence 4 > k. This proves the first part.
Now let k = 3. Then σ(n) ≥ 3n implies 2α(−pq + 2p + 2q + 2) − (pq + p + q + 1) ≥ 0,

and clearly we must have −pq + 2p + 2q + 2 > 0. Let q = p + x, where x ≥ 2. Then we get
−p2 − px+ 2p+ 2q + 2x+ 2 > 0

p2 − 4p < 2x− px+ 2, (3.3)

which gives us p(p− 5) < (2− p)(x+ 1).
The R.H.S. of this inequality is negative, so the L.H.S. must be negative. Hence p − 5 < 0

which implies p = 3. Therefore (3.3) implies 9 − 12 < 2x − 3x + 2 which gives x < 5 and so
q = 5 or 7.

If q = 5, then (3.2) implies (2α+1 − 1)4.6 ≥ 3.2α.3.5. After some algebraic manipulation we
get from this α ≥ 3. If q = 7, then (3.2) implies (2α+1 − 1)4.8 ≥ 3.2α.3.7 from which we get
α ≥ 5. So, we have the two cases which we need to work with now.

Case 1: n = 2α.3.5, where α ≥ 3.
If n is a k-layered number, then it is necessary that k|σ(n). Here σ(n) = (2α+1− 1)4.6, which

is divisible by 3. Let α > 3.
Now

σ(n)

3
− n = 2α − 8

= (3 + 5)(1 + 2 + 22 + · · ·+ 2α−4).

Therefore
σ(n)

3
= n+ (3 + 5)(1 + 2 + 22 + · · ·+ 2α−4).

Let A = {n, 3, 2.3, 22.3, . . . , 2α−4.3, 5, 2.5, 22.5, . . . , 2α−4.5}
Again

σ(n)

3
= 8(2α+1 − 1)

= 8(1 + 2 + 22 + · · ·+ 2α)

= 8 + 16(1 + 2 + 22 + · · ·+ 2α−1)

= 8 + (1 + 2 + 22 + · · ·+ 2α−1) + 15(1 + 2 + 22 + · · ·+ 2α−1)

= 8 + 2α − 1 + 15(1 + 2 + 22 + · · ·+ 2α−1)

= 1 + 2 + 22 + 2α + 3.5(1 + 2 + 22 + · · ·+ 2α−1).

Let B = {1, 2, 22, 2α, 3.5, 2.3.5, 22.3.5, . . . , 2α−1.3.5}

Now let C = D − A ∪ B, where D is the set of all divisors of n. Then θ(C) =
σ(n)

3
and we

get that {A,B,C} is the 3-partition of n.
When α = 3 then n = 120 and we can take the sets A,B,C to be the following

A = {1, 2, 4, 8, 15, 30, 60}, B = {3, 5, 6, 10, 12, 20, 24}

and C = {120}, which gives us the 3-partition.
Case 2: n = 2α.3.7, where α ≥ 5.
Here σ(n) = (2α+1− 1)4.8. Therefore 3|σ(n) if and only if 3|(2α+1− 1) if and only if α is odd.
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Now

σ(n)

3
− n =

32(2α+1 − 1)

3
− 21.2α

=
2α − 32

3

=
2(2α−1 − 1)− 30

3

=
2(1 + 2 + 22 + · · ·+ 2α−2)− 30

3

=
2.3(1 + 22 + 24 + · · ·+ 2α−3)− 30

3
= 2(1 + 22 + 24 + · · ·+ 2α−3)− 10

= 2 + 23 + 25 + 27 + · · ·+ 2α−2 − 10.

So
σ(n)

3
= n+ 25 + 27 + · · ·+ 2α−2.

Let A = {n, 25, 27, . . . , 2α−2}.
Again

σ(n)

3
=

32(2α+1 − 1)

3

=
32(1 + 2 + 22 + · · ·+ 2α)

3
= 32(1 + 22 + 24 + · · ·+ 2α−1)

= (21 + 7 + 3 + 1)(1 + 22 + 24 + · · ·+ 2α−1)

= 3.7(1 + 22 + 24 + · · ·+ 2α−1)

+ 7(1 + 22 + 24 + · · ·+ 2α−1) + 3(1 + 22 + 24 + · · ·+ 2α−1)

+ (1 + 22 + 24 + · · ·+ 2α−1).

Let B = {1, 22, . . . , 2α−1, 3, 3.22, . . . , 3.2α−1, 7, 7.22, . . . , 7.2α−1, 3.7, 3.7.22, . . . , 3.7.2α−1}, and let

C = D − A ∪ B, where D is the set of all divisors of n. Then, θ(C) =
σ(n)

3
and we get that

{A,B,C} is the 3-partition.
This completes the proof. �

Remark 3.4. 23.3.5 = 120 is the smallest k-layered number, where k ≥ 3.

The following result of Jokar [Jok19] is needed for our next results.

Proposition 3.5. [Jok19, Proposition 2.3] If n is a k-layered number and (n,w) = 1 then nw
is a k-layered number.

Now, combining Proposition 3.5 with Theorem 3.3 we get the following result.

Theorem 3.6. (1) 2α.3.5.p4
r4p5

r5 . . . pl
rl is a 3-layered number for all l, r4, r5, . . . , rl and α ≥

3.
(2) 2α.3.5β.7.p5

r5p6
r6 . . . pl

rl is a 3-layered number for all l, β, r5, r6, . . . , rl, α ≥ 5 and α odd.

An easy result for k-layered numbers with more than 3 distinct prime factors is the following.

Theorem 3.7. Let n = p1p2 . . . pl, where l ≤ 15 and pis are odd distinct primes. Then n is not
a k-layered number for any k ≥ 3.
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Proof. This follows from the elementary inequality
∏15

i=1

(
1 +

1

pi

)
< 3. �

We will close this section with some results which connects k-layered numbers with Zumkeller
numbers and practical numbers. Recall that n is called a practical number if all smaller integers
than n can be written as sums of distinct divisors of n. Before going into our results we need
the following facts.

Proposition 3.8. [Sri48] If n is a practical number, then σ(n) ≥ 2n− 1.

Proposition 3.9. [PBR13, Proposition 8] A positive integer n is a practical number if and only
if every positive integer ≤ σ(n) is a sum of distinct positive divisors of n.

Theorem 3.10. n is a 2k-layered number, where k > 1. Then n is Zumkeller number.

This follows quite easily from the definitions.

Theorem 3.11. Let n ≥ 2 be a practical number such that 3|σ(n). Let x be a Zumkeller number
such that (n, x) = 1. Then nx is 3-layered number.

Proof. We have σ(n) ≥ 2n − 1 and σ(x) ≥ 2x. Now σ(nx) = σ(n)σ(x), since (n, x) = 1. So,
σ(nx) ≥ (2n− 1)(2x) ≥ 3nx.

Now
σ(nx)

3
=
σ(n)

3
.σ(x). By Proposition 3.9,

σ(n)

3
is sum of distinct divisors of n. We have,

σ(nx) =
σ(n)

3
.σ(x) +

2σ(n)

3
.σ(x) =

σ(n)

3
.σ(x) +

2σ(n)

3
.
σ(x)

2
+

2σ(n)

3
.
σ(x)

2
.

Let the set of all divisors of n be Dn and that of x be Dx. Let the set of the distinct divisors of

n for which
σ(n)

3
can be expressed as a sum of distinct divisors of n be A. Let A′ = A.Dx. Since

x is a Zumkeller number, let the partition be {B,C}. Let B′ = (Dn−A).B and C ′ = (Dn−A).C.
Then {A′, B′, C ′} is the partition for nx. That is nx is 3-layered number. �

Example 3.12. x = 945 = 33.5.7 is the smallest odd Zumkeller number. 2, 8, 32, 88, 104 are
the first five practical numbers n such that 3|σ(n) and (x, n) = 1. Therefore 2.945, 8.945, 32.945,
88.945, 104.945 are 3-layered numbers. That is 1890, 7560, 30240, 83160, 98280 are 3-layered
numbers.

We can generalize Theorem 3.11 further.

Theorem 3.13. Let n ≥ 2 be a practical number and k|σ(n) where k ≥ 3. Let x be a (k − 1)-
layered number such that (n, x) = 1. Then nx is k-layered number.

Proof. Since, σ(n) ≥ 2n− 1 and σ(x) ≥ (k − 1)x, we get σ(nx) = σ(n)σ(x) ≥ knx.
Now

σ(nx) = σ(n)σ(x) =
σ(n)

k
.σ(x) +

(k − 1)σ(n)

k
.σ(x)

=
σ(n)

k
.σ(x) +

(k − 1)σ(n)

k
.


σ(x)

k − 1
+
σ(x)

k − 1
+ · · ·+ σ(x)

k − 1︸ ︷︷ ︸
k−1

 .

The rest of the proof works in a similar way to that of Theorem 3.11. �

4. Some further results on Zumkeller numbers

The aim of this section is to show some results connected with Zumkeller numbers and Har-
monic numbers as well as to hint at some other type of results that can be derived for Zumkeller
numbers. We hope that others would take up this direction of research in the near future.
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4.1. Zumkeller numbers and Harmonic numbers. In 1948, Ore [Ore48] introduced the
concept of Harmonic numbers, and these numbers were named as Ore’s harmonic numbers by
Pomerance [Pom73]. Let n be a positive integer, the harmonic mean of the divisors of n is
defined as

1

H(n)
=

1

τ(n)

∑
d|n

1

d
.

And since

n
∑
d|n

1

d
=
∑
d|n

n

d
=
∑
d|n

d = σ(n),

it follows that

H(n) =
nτ(n)

σ(n)
.

Therefore, we remark that H(n) is an integer if and only if σ(n)|nτ(n). A number n satisfying the
condition σ(n)|nτ(n) is called a harmonic number. Obviously H(n) > 1 and if m = 2n−1(2n−1)
is a perfect number then H(m) = n. Since

H(m) =
mτ(m)

σ(m)
=

2×m× n
2m

= n.

Harmonic numbers are interesting in their own rights and they have some connection with
perfect numbers. A result in this direction was given by Laborde [Lab55].

Theorem 4.1 (Laborde, [Lab55]). If a given integer n is even and has the form

n = 2H(n)−1(2H(n) − 1).

Then n must be a perfect number.

We can prove another very simple result of this type.

Lemma 4.2. If n = 2H(n)−1(2H(n) − 1) is even, then H(2H(n) − 1) < 2.

Proof. We have

H(n) =
2H(n)−1 × (2H(n) − 1)× τ(2H(n)−1)× τ(2H(n) − 1)

σ(2H(n)−1)× σ(2H(n) − 1)

=
2H(n)−1 × (2H(n) − 1)×H(n)× τ(2H(n) − 1)

(2H(n) − 1)× σ(2H(n) − 1)

Therefore, 1 =
2H(n)−1 × τ(2H(n) − 1)

σ(2H(n) − 1)
. Also, we have

H(2H(n) − 1) =
(2H(n) − 1)× τ(2H(n) − 1)

σ(2H(n) − 1)
.

Hence

H(2H(n) − 1) =
(2H(n) − 1)

2H(n)−1 = 2− 1

2H(n)−1 .

This completes our proof. �

In the remainder of this subsection we discuss some connections of Zumkeller numbers with
Harmonic numbers.

Proposition 4.3. Let n be a Zumkeller number, then H(n) ≤ τ(n)

2
. Furthermore, if n is a

k-layered number, then H(n) ≤ τ(n)

k
.
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Proof. Since n is a Zumkeller number so σ(n) ≥ 2n. Therefore

H(n) =
nτ(n)

σ(n)
≤ nτ(n)

2n
.

Hence H(n) ≤ τ(n)

2
. The proof for the second part is analogous. �

Corollary 4.4. n = 2αp is a Zumkeller number if and only if H(n) ≤ τ(n)

2
. Also, equality holds

when n is a perfect number.

Proof. Using Proposition 4.3, if n is a Zumkeller number, then H(n) ≤ τ(n)

2
. For converse, we

have

H(n) =
nτ(n)

σ(n)
≤ τ(n)

2
.

Thus σ(n) ≥ 2n. The proof is concluded by Theorem 2.3. �

Corollary 4.5. Let n > 6 be a positive integer. For distinct prime numbers p and q with n = pq
is not a Zumkeller number.

Proof. If p and q are distinct odd primes, then n = pq is not a Zumkeller number. This was
discussed in the beginning of Section 2. Now let n = 2p, where p is an odd prime. Then

τ(n) = 4, σ(n) = 3(p+ 1) and H(n) =
8p

3(p+ 1)
= 2 +

2

3
− 8

3(p+ 1)
.

But,
2

3
− 8

3(p+ 1)
> 0 if and only if p > 3. Therefore H(n) > 2 for all p > 3. That is

H(n) >
τ(n)

2
for all p > 3. Hence n is not a Zumkeller number for all p > 3. �

The following is an almost immediate consequence of the above results.

Corollary 4.6. If n is a prime number or a semi-prime number1, then n is not a Zumkeller
number except n = 6.

Although conditions of the following lemma are weaker than Corollary 2.5, but it is a more
elegant proof using Harmonic mean numbers.

Lemma 4.7. For a prime p < 2α+1 − 1 for some α, let n = 2α(2α+1 − 1) be a perfect number.
Then m = 2αp is a Zumkeller number.

Proof. Using Corollary 4.4, it is enough to show H(m) ≤ 2(α + 1)

2
. Let p and q be two prime

numbers with p > q, then H(2αp) > H(2αq). If H(2αp) ≤ H(2αq), then

H(2αp) =
2αp× (α + 1)× 2

(2α+1 − 1)× (p+ 1)
≤ 2αq × (α + 1)× 2

(2α+1 − 1)× (q + 1)
= H(2αq).

If
p

p+ 1
≤ q

q + 1
,then pq + p ≤ pq + q and p ≤ q, which is a contradiction. If n is a perfect

number, then H(n) = α + 1 and 2α+1 − 1 is a prime. Since p < 2α+1 − 1, we have

H(2αp) < H(2α(2α+1 − 1)).

Hence H(2αp) < α + 1. Then H(2αp) <
τ(2αp)

2
and this completes our proof. �

1Numbers with only two prime factors.
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Proposition 4.8. Let n = 2α(2α+1 − 1) be a Zumkeller number. Then

H(n) < 22α+1.

Proof. Proposition 4.3 leads to H(n) ≤ (α + 1)τ(2α+1 − 1)

2
. Let 2α+1 − 1 = pα1

1 p
α2
2 · · · pαrr for

some primes p1, p2, . . . , pr. For each prime p and 1 6= k ∈ N, we have pk > k + 1. (This follows
easily from the elementary inequality 2k ≥ k+1 for all k ∈ N). Put p = 2, then α+1 < 2α+1−1.
Also, for each positive integer n > 2, τ(n) < n.

Consider n = 2α+1 − 1, then τ(2α+1 − 1) < 2α+1 − 1. By using these facts, we have

H(2α(2α+1 − 1)) ≤ (α + 1)τ(2α+1 − 1)

2

<
(2α+1 − 1)2

2
<

(2α+1)2

2
= 22α+1.

�

4.2. Zumkeller numbers with more than two distinct prime factors. Bhaskara Rao and
Peng [PBR13, Proposition 20] provided several bounds on Zumkeller numbers with less than
seven distinct prime factors. In the following result we extend these bounds.

Theorem 4.9. Let n = pa11 p
a2
2 · · · pamm be a Zumkeller number where all pi’s are distinct primes.

Then

(1) If m = 4, then p1 = 3. If p2 = 7, then p3 ≤ 13.
(2) If m = 5, then p1 = 3. If p2 = 11, then p3 = 13, p4 = 17 and p5 = 19.
(3) If m = 6 then p1 = 3. If p2 = 11, then p3 ≤ 17.
(4) If m ≤ 15 and if p1 = 3 then p2 ≤ 23.
(5) If m ≤ 8 and if p1 = 3, p2 = 5, then p3 ≤ 79.

Proof. The result follows by repeated application of the following elementary inequality

2 ≤ σ(n)

n
≤

m∏
i=1

pi
pi − 1

.

For instance, to see the second bound we notice that

2 ≤ 3

2
× 11

10
× 17

16
× 19

18
× 23

22
≤ 1.94,

which is a contradiction, so p3 = 13 in this case. And similarly we can show the other bounds. �

Remark 4.10. The bounds in Theorem 4.9 can be extended using the same inequality by taking
larger values of m. This is one idea which is exploited in finding odd deficient-perfect numbers2

(see for instance, the work of the second author with Dutta [DS19]).

We can say a bit more about even Zumkeller numbers with two distinct odd prime factors.
Bhakara Rao and Peng [PBR13] also proved the following theorem.

Theorem 4.11 (Bhaskara Rao - Peng). [PBR13, Corollary 5] Let n be a Zumkeller number and
(n,m) = 1 then nm is a Zumkeller number.

We close this section with the following theorems which uses Theorem 4.11.

Theorem 4.12. Le n be a Zumkeller number. Then 2n is a Zumkeller number.

2Numbers n such that σ(n) = 2n− d, where d is a proper divisor of n.
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Proof. Let n be a odd number, then using Theorem 4.11, 2n is a Zumkeller number.
Let n = 2α` with (2, `) = 1 and D be the set of all divisors of n. Since n is a Zumkeller number,

it is possible to partition D into two disjoint subsets A and B with the same sum. Let D′ and
D′′ be set of all positive divisors of 2n and `, respectively. Consider Γ(A) = {2αd ∈ A|d ∈ D′′}
and Γ(B) = {2αd ∈ B|d ∈ D′′}. Clearly

D′ = D ∪ {2α+1d|d ∈ D′′}.
Now, we put

A′ = (A\Γ(A)) ∪ {2α+1d|2αd ∈ A} ∪ Γ(B),

and
B′ = (B\Γ(B)) ∪ {2α+1d|2αd ∈ B} ∪ Γ(A).

Since θ(A) = θ(B), clearly A′ and B′ are a partition of the set D′ with θ(A′) = θ(B′). �

Theorem 4.13. Every 12 consecutive numbers has one Zumkeller number.

Proof. Every 12 consecutive numbers must include at least one number which is divisible by
6, but not by 9. Let us call this number n = 2α3m for some α ≥ 1 and m ∈ N. Clearly,
(2α3,m) = 1. Then, by Theorem 4.11 n = 2α3m is Zumkeller. �

Remark 4.14. There exist 11 consecutive non Zumkeller numbers 283 through 293.

5. Concluding Remarks

We have proved several results characterizing Zumkeller and k-layered numbers with two and
three distinct prime factors, but the study is by no means complete. The following directions of
study appear to us which might lead to some nice results, we leave these as open questions for
the readers.

(1) In Section 2 we proved several criteria for n = 2αpβ to be a Zumkeller number, it might
be possible to extend these type of results for a general even n.

(2) In Section 3 we have only just touched the surface of results for k-layered numbers.
A systematic study, like that done by Bhaskara Rao and Peng [PBR13] for Zumkeller
numbers, if done for k-layered numbers would no doubt reveal many more properties.

(3) In Subsection 4.1, the connections between harmonic mean numbers with other number
sequences could lead to interesting arithmetic properties of Zumkeller numbers.

(4) In Subsection 4.2, several of the bounds presented could no doubt be extended much
further using more sophisticated analytic techniques.
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