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Abstract. We look at extensions of formulas given by Vladeta and recently proved by Dhar on integer
partitions where the smallest part occurs at least m times and on integer partitions with fixed differences
between the largest and smallest parts where the smallest part occurs at least k times. Our results extend
Dhar’s results for the m = 2 and k = 1 cases to the general cases for arbitrary m and k. We also look
at analogous results for overpartitions and ℓ-regular partitions.

1. Introduction

A partition λ of n is a non-increasing sequence of natural numbers λ1 ≥ λ2 ≥ · · · ≥ λk, such that∑k
i=1 λi = n, where λi’s are called the parts of the partition and k is called the length of the partition.

Here, λ1 and λk are called the largest and smallest parts of the partition respectively. It is customary
to denote by p(n) the number of partitions of n. Several interesting statistics on ordinary partitions
and other generalizations have been studied since a long time. Andrews [And98] wrote the definitive
book on partitions to which we refer the reader for more details.

Recently, Dhar [Dha21] studied the statistic am(n) (A117989), which counts the number of partitions
of n where the smallest part occurs at least m times, for m = 2. He proved the following proposition
using both analytic and combinatorial methods.

Proposition 1.1 (Formula 1, [Dha21]). For all natural numbers n, we have

a2(n) = 2p(n)− p(n+ 1).

He further proved the following result combinatorially.

Proposition 1.2 (Formula 2, [Dha21]). For all natural numbers n, we have

a2(n) = p(2n, n),

where p(m,n) is the number of partitions of m with fixed difference between the largest and smallest
parts equal to n.

The function p(n, t) was studied by Andrews, Beck and Robbins [ABR15] who gave a generating function
for it.

In this paper we present two generalizations of Proposition 1.1 to am(n), from which Proposition 1.1
follows as corollaries. The first generalization is proved combinatorially and is given below.

Theorem 1.3. For all n ≥ 1 and m ≥ 2, we have

am(n) = 2p(n)− p(n+ 1)− p(n− 2) + p(n−m)−
m−1∑
ℓ=2

⌊
n
ℓ

⌋
+1∑

k=3

Qℓ,k(n),

where Qℓ,k(n) is the number of partitions of n− ℓ(k − 1) with smallest part k.

Remark 1.4. Clearly Proposition 1.1 is a corollary of this result.

Remark 1.5. All empty sums are taken to be 0 and all empty products are taken to be 1 in this paper.

The second generalization is proved analytically (Theorem 3.3), and we wait until Section 3 to state
and prove it in its full generality. This generalization answers the question that Dhar [Dha21] asked in
his paper about a closed form of the generating function of am(n). We state only two simple cases of
the result.
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Theorem 1.6. We have

a3(n) = 3p(n)− p(n+ 1)− 2p(n+ 2) + p(n+ 3),

for all natural numbers n.

Theorem 1.7. We have

a4(n) = 4p(n)− p(n+ 1)− 2p(n+ 2)− 2p(n+ 3) + p(n+ 4) + 2p(n+ 5)− p(n+ 6),

for all natural numbers n.

With regards to Proposition 1.2, if we denote by am(n, k) the total number of partitions of n where
the smallest part occurs at least m times and the difference between the largest and smallest parts is k,
then the following result is obvious (if the smallest part is k and the largest part is n+k for a partition
counted by am−1(2n, n), then just remove the part n + k and add a part of size k to get a partition
counted by am(n)).

Proposition 1.8. For all natural number n and m ≥ 2 we have,

am(n) = am−1(2n, n).

Remark 1.9. Clearly a1(2n, n) = p(2n, n) and hence Proposition 1.2 follows as a corollary of Propo-
sition 1.8.

In Section 4 we will find the generating function of am(n, ℓ) for ℓ > 1. Specializing m = 1 will give us
the main result of Andrews, Beck and Robbins [ABR15].

After the work of Andrews, Beck and Robbins [ABR15], other authors such as Chern [Che17], Chern
and Yee [CY18] and Lin and Xheng [LZ21] looked at similar results for other classes of partitions, such
as overpartitions and ℓ-regular partitions. In a similar spirit, all of the statistics defined in this section
can also be suitably modified and defined for other classes of partitions, such as overpartitions, ℓ-regular
partitions, etc. We discuss these briefly towards the end of the paper. The paper is organized as follows:
in Section 2 we prove Theorem 1.3, in Section 3 we prove Theorems 1.6 and 1.7 and generalize them
for am(n), in Section 4 we find the generating function of am(n, ℓ) for ℓ > 1, in Section 5 we look at
analogous results for overpartitions and ℓ-regular partitions, and finally we end the paper with some
concluding remarks and questions in Section 6.

2. Proof of Theorem 1.3

We define the following sets

P (n) := {λ|λ is a partitions of n},

and

Am(n) := {λ|λ ∈ P (n), the smallest part occurs at least m times}.
The set P (n)−A3(n) contains all partitions of n in which the least part occurs exactly once or twice.
Now we have three cases.

Case 1. (The least part occurs exactly once) Here we have p(n+1)−p(n) partitions. (Although
the proof is clear for this assertion, the interested reader can see Section 4 of Dhar’s paper for more
details [Dha21].)

Case 2. (The least parts are 1 and 1) If we remove the 1’s, then they become the partitions of
n− 2 in which there is no 1 as a part. So, here we have p(n− 2)− p(n− 3) partitions.

Case 3. (The least parts are greater than 1) Let the least parts of a partition be k − 1 and
k − 1. If we remove both the parts, then the partition of n becomes a partition of n − 2(k − 1) with
the least part greater than or equal to k. If the least part of such partitions of n is k− 1, then here we
have Qk(n) partitions of n − 2(k − 1), where Qk(n) is the number of partitions of n − 2(k − 1) with
lowest part at least k. Therefore,

p(n)− a3(n) = p(n+ 1)− p(n) + p(n− 2)− p(n− 3) +

⌊
n
2

⌋
+1∑

k=3

Qk(n).
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Hence,

a3(n) = 2p(n)− p(n+ 1)− p(n− 2) + p(n− 3)−

⌊
n
2

⌋
+1∑

k=3

Qk(n).

For a4(n) two more cases arise.
Case 4. (The least parts are 1, 1, and 1) Similar to Case 2, here we have p(n − 3) − p(n − 4)

partitions.
Case 5. (There are exactly three least parts and they are greater than 1) Here we have

Q3,k(n) partitions, corresponding to the partitions of n with the least parts k − 1(> 1), where Qℓ,k(n)
denote the number of partitions of n− ℓ(k − 1) with smallest part k. Therefore,

p(n)−a4(n) = p(n+1)−p(n)+p(n−2)−p(n−3)+p(n−3)−p(n−4)+

⌊
n
2

⌋
+1∑

k=3

Qk(n)+

⌊
n
3

⌋
+1∑

k=3

Q3,k(n).

Hence,

a4(n) = 2p(n)− p(n+ 1)− p(n− 2) + p(n− 4)−

⌊
n
2

⌋
+1∑

k=3

Q2,k(n)−

⌊
n
3

⌋
+1∑

k=3

Q3,k(n).

Proceeding in this way we get Theorem 1.3.

3. Generating Function of am(n)

In this section we generalize Proposition 1.1 by finding an explicit form of the generating function of
am(n). We use the standard notations

(a)n = (a; q)n :=
n−1∏
i=o

(1− aqi),

and

(a)∞ = (a; q)∞ := lim
n→∞

(a; q)n.

Before proceeding further, we state two results which we will need in our analysis.

Proposition 3.1 (Cauchy’s identity, [And98], p.17, Theorem 2.1). If |q| < 1, |t| < 1, then

∞∑
k=0

(a)kt
k

(q)k
=

(at)∞
(t)∞

. (3.1)

By replacing a = 0 in (3.1), we get

∞∑
k=0

tk

(q)k
=

1

(t)∞
. (3.2)

We will use this identity by replacing t = q, q2, and so on, without commentary.

Proposition 3.2 (Heine’s transformation, [And98], p.19, Corollary 2.3). If |q|, |t|, |b| < 1, then

∞∑
k=0

(a)k(b)kt
k

(q)k(c)k
=

(b)∞(at)∞
(c)∞(t)∞

∞∑
k=0

(c/b)k(t)kb
k

(q)k(at)k
.
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The generating function of am(n) is given by

∞∑
n=1

am(n)qn =

∞∑
k=1

q

k + k + · · ·+ k︸ ︷︷ ︸
m (1 + qk + q2k + · · · )(1 + qk+1 + q2(k+1) + · · · ) · · ·

=

∞∑
k=1

qmk

(qk)∞
=

1

(q)∞

∞∑
k=1

(q)k−1q
mk =

qm

(q)∞

∞∑
k=0

(q)kq
mk =

qm

(q)∞

∞∑
k=0

(q)k(q)kq
mk

(q)k

=
qm(qm+1)∞

(qm)∞

∞∑
k=0

(qm)kq
k

(q)k(qm+1)k

(by replacing a = q, b = q, c = 0, and t = qm in Heine’s transformation)

=
∞∑
k=0

qk+m

(q)k(1− qk+m)
.

Thus, we get

∞∑
n=1

am(n)qn =
∞∑
k=0

qk+m

(q)k+m
(1− qk+1)(1− qk+2) · · · (1− qk+m−1). (3.3)

We are now ready to prove Theorems 1.6 and 1.7.

Proof of Theorem 1.6. Replacing m = 3 in equation (3.3), we get

∞∑
n=1

a3(n)q
n =

∞∑
k=0

qk+3

(q)k+3
(1− qk+1)(1− qk+2) =

∞∑
k=0

qk+3

(q)k+3
(1− (qk+1 + qk+2) + qk+1+k+2)

=

∞∑
k=0

qk+3

(q)k+3
−
(
1 + q

q2

) ∞∑
k=0

(q2)k+3

(q)k+3
+

1

q2+1

∞∑
k=0

(q3)k+3

(q)k+3

=
1

(q)∞
− q2

(1− q)(1− q2)
− q

1− q
− 1

−
(
1 + q

q2

)(
1

(q2)∞
− q4

(1− q)(1− q2)
− q2

1− q
− 1

)
+

1

q2+1

(
1

(q3)∞
− q6

(1− q)(1− q2)
− q3

1− q
− 1

)
=

1

(q)∞
− 1 + q

q2
· 1− q

(q)∞
+

1

q2+1
· (1− q)(1− q2)

(q)∞
− q3 − q2 − q + 1

q3

=

(
3− 1

q
− 2

q2
+

1

q3

)
1

(q)∞
− q3 − q2 − q + 1

q3

=
3

(q)∞
− 1

q(q)∞
− 2

q2(q)∞
+

1

q3(q)∞
− q3 − q2 − q + 1

q3
.

Clearly the last quantity is the generating function of 3p(n)− p(n+1)− 2p(n+2)+ p(n+3) for n ≥ 1.
This proves the result. □
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Proof of Theorem 1.7. Replacing m = 4 in equation (3.3) and following a similar process as in the proof
of Theorem 1.6, we get

∞∑
n=1

a4(n)q
n

=
1

(q)∞
− q3

(1− q)(1− q2)(1− q3)
− q2

(1− q)(1− q2)
− q

1− q
− 1

−
(
1 + q + q2

q3

)
×
(

1

(q2)∞
− q6

(1− q)(1− q2)(1− q3)
− q4

(1− q)(1− q2)
− q2

1− q
− 1

)
+

(
1 + q + q2

q3+2

)
×
(

1

(q3)∞
− q9

(1− q)(1− q2)(1− q3)
− q6

(1− q)(1− q2)
− q3

1− q
− 1

)
− 1

q3+2+1
×
(

1

(q4)∞
− q12

(1− q)(1− q2)(1− q3)
− q8

(1− q)(1− q2)
− q4

1− q
− 1

)
=

1

(q)∞
−
(
1 + q + q2

q3

)
× 1

(q2)∞
+

(
1 + q + q2

q3+2

)
× 1

(q3)∞
− 1

q3+2+1
× 1

(q4)∞
+A,

where

A = −q6 − q5 − q4 + q2 + q − 1

q6
.

Simplifying this further, we get

∞∑
n=1

a4(n)q
n

=
1

(q)∞
− (1− q3)

q3
× 1

(q)∞
+

(1− q3)(1− q2)

q3+2
× 1

(q)∞
− (1− q3)(1− q2)(1− q)

q3+2+1
× 1

(q)∞
+A

=

(
1−

(
1

q3
− 1

)
+

(
1

q3
− 1

)(
1

q2
− 1

)
−
(

1

q3
− 1

)(
1

q2
− 1

)(
1

q
− 1

))
1

(q)∞
+A

=

(
4− 1

q
− 2

q2
− 2

q3
+

1

q4
+

2

q5
− 1

q6

)
1

(q)∞
+A

=
∞∑
n=0

(4p(n)− p(n+ 1)− 2p(n+ 2)− 2p(n+ 3) + p(n+ 4) + 2p(n+ 5)− p(n+ 6))qn

+ B +A

(Since,
1

qk(q)∞
=

∞∑
n=0

p(n+ k)qn +
k−1∑
i=0

p(i)

qk−i
, we take B as the sum of the remaining terms.)

=
∞∑
n=1

(4p(n)− p(n+ 1)− 2p(n+ 2)− 2p(n+ 3) + p(n+ 4) + 2p(n+ 5)− p(n+ 6)) qn

+ C + B +A,

where

C = 4p(0)− p(1)− 2p(2)− 2p(3) + p(4) + 2p(5)− p(6),

that is, the coefficient of q0 in the summand which is missing. We can now check that C + B +A = 0,
which proves the result. □

As promised in Section 1, proceeding in an exactly similar way, we get a more general result.

Theorem 3.3. For n,m > 0, we have

∞∑
n=1

am(n)qn =
1

(q)∞

(
1 +

m−1∑
k=1

(−1)k
k−1∏
i=0

(
1

qm−1−i
− 1

))
−Dm,
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where Dm is the sum of the terms with power of q less than or equal to 0 in the expansion of

1 +

m−1∑
k=1

(−1)k
k−1∏
i=0

(
1

qm−1−i
− 1

)
.

Remark 3.4. Putting m = 2 in Theorem 3.3, we get Proposition 1.1.

Remark 3.5. Putting m = 3 in Theorem 3.3, we get
∞∑
n=1

a3(n)q
n =

1

(q)∞

(
1−

(
1

q2
− 1

)
+

(
1

q2
− 1

)(
1

q
− 1

))
−D3

=
1

(q)∞

(
3− 1

q
− 2

q2
+

1

q3

)
−D3.

This was shown in the proof of Theorem 1.6, which now follows as a corollary of Theorem 3.3.

4. Generating Functions of am(n, ℓ)

We follow the method used by Andrews, Beck and Robbins [ABR15] to find the generating function
of am(n, ℓ) below.

Theorem 4.1. For ℓ > 1 we have

∞∑
n=1

am(n, ℓ)qn =
qℓ+m+1(q)m(q)ℓ−m+1

((q)ℓ)2
(−1)−m−1q(−m2−3m−2)/2

(q)ℓ −
m∑
j=0

(
ℓ

j

)
q

(−1)jqj+j(j−1)/2

 .

Proof. Clearly the generating function of am(n, ℓ) is given by

∞∑
n=1

am(n, ℓ)qn =

∞∑
k=1

q

k + k + · · ·+ k︸ ︷︷ ︸
m qk+ℓ

ℓ∏
i=0

(1 + qk+i + q2(k+i) + · · · )

= qℓ
∑
k≥1

q(m+1)k(q)k−1

(q)k+ℓ
= qℓ+m+1

∑
k≥0

q(m+1)k(q)k
(q)k+ℓ+1

=
qℓ+m+1

(q)ℓ+1

∑
k≥0

(q)k(q)kq
(m+1)k

(q)k(qℓ+2)k
.

We now use the following transformation [And98, p. 38]∑
k≥0

(a)k(b)kz
k

(q)k(c)k
=

(c/b)∞(bz)∞
(c)∞(z)∞

∑
j≥0

(abz/c)j(b)j(c/b)
j

(q)j(bz)j
,

to get
∞∑
n=1

am(n, ℓ)qn =
qℓ+m+1(qℓ+1)∞(qm+2)∞
(q)ℓ+1(qℓ+2)∞(qm+1)∞

∑
j≥0

(qm+1−ℓ)j(q)jq
(ℓ+1)j

(q)j(qm+2)j

=
qℓ+m+1

(q)ℓ

ℓ−m−1∑
j=0

(qm+1−ℓ)jq
(ℓ+1)j

(qm+1)j+1

=
qℓ+m+1

(q)ℓ

ℓ−m−1∑
j=0

(1− qℓ−m−1)(1− qℓ−m−2) · · · (1− qℓ−m−j)(−1)jq(m+1)j+(j+1
2 )

(qm+1)j+1

=
qℓ+m+1(1− q) · · · (1− qm)

(1− qℓ−m) · · · (1− qℓ)

ℓ−m−1∑
j=0

(−1)jq(m+1)j+(j+1
2 )

(q)m+j+1(q)ℓ−m−j−1

=
qℓ+m+1(q)m(q)ℓ−m+1

(q)ℓ(q)ℓ

ℓ−m−1∑
j=0

(
ℓ

m+ j + 1

)
q

(−1)jq(m+1)j+(j+1
2 ),
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where (
a

b

)
q

:=
(q)a

(q)b(q)a−b
.

We use the q-binomial theorem [And98, p. 36]

(z)n =
n∑

j=0

(
n

j

)
q

(−1)jzjqj(j−1)/2,

to get

∞∑
n=1

am(n, ℓ)qn =
qℓ+m+1(q)m(q)ℓ−m+1

((q)ℓ)2

ℓ∑
j=m+1

(
ℓ

j

)
q

(−1)j−m−1q(m+1)(j−m−1)+(j−m
2 )

=
qℓ+m+1(q)m(q)ℓ−m+1

((q)ℓ)2
(−1)−m−1q(−m2−3m−2)/2

ℓ∑
j=m+1

(
ℓ

j

)
q

(−1)jqj+j(j−1)/2

=
qℓ+m+1(q)m(q)ℓ−m+1

((q)ℓ)2
(−1)−m−1q(−m2−3m−2)/2

(q)ℓ −
m∑
j=0

(
ℓ

j

)
q

(−1)jqj+j(j−1)/2

 .

□

If we replace m = 1 in Theorem 4.1 we get back the result of Andrews, Beck and Robbins [ABR15,
Theorem 1].

5. Other Classes of Partitions

In this section we briefly look at overpartitions and ℓ-regular partitions and prove results analogous
to those stated in Section 1.

5.1. Overpatitions. Overpartitions of n are the partitions of n in which the first occurrence (equiva-
lently, the last occurrence) of a part may be overlined. The number of overpartitions of n are denoted
by p̄(n). For example, p̄(3) = 8, and the overpartitions of 3 are

3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1, 1̄ + 1 + 1.

We have the generating function
∞∑
n=0

p̄(n)qn =

∞∏
n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · .

We define ām(n) to be the number of overpartitions of n where the smallest part occurs at least m
times. We get the generating function of ām(n) as follows

∞∑
n=1

ām(n)qn =

∞∑
k=1

2qmk(−qk)∞
(1 + qk)(qk)∞

.

Here, a overlined part is equal to a non-overlined part if their value is equal. For example 1̄ = 1. The
terms qmk, (−qk)∞ and (qk)∞ are similarly explained as in finding the generating function for am(n).
We have the factor of 2 because the smallest part can be either overlined or non-overlined and finally we
need to divide by (1 + qk) because if k is the smallest part then it would not be generated by (−qk)∞.

Analogous to Proposition 1.1, we now have the following result.

Theorem 5.1. For all n ≥ 1, we have

ā2(n) = 2p̄(n)− p̄(n+ 1) + ū(n+ 1),

where ū(n) is the number of overpartitions of n with the following conditions:

(1) 1 is not a part.
(2) Smallest part must be overlined, and no other part of that value is present. (For example,

7 + 7 + 2̄ is included, but 7 + 7 + 2̄ + 2 is not.)
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(3) The value of the first and second greatest parts are equal or consecutive, but if they are consec-
utive then the second greatest part must be overlined. (For example, 7 + 6̄ + 2̄ is included, but
7 + 6 + 2̄ is not.)

Proof. Here we get, p̄(n)− ā2(n) counts the overpartitions of n where the least part occurs exactly once.
And p̄(n + 1) − p̄(n) counts the overpartitions of n + 1 where there is no 1 as a part. Let us denote
the sets by Ā and B̄, respectively, whose cardinalities are counted by p̄(n)− ā2(n) and p̄(n+ 1)− p̄(n)
respectively.

We divide Ā into two classes:

(a) The least part is not overlined. In this case we add 1 to the least part. Then for each
of these overpatitions there corresponds a unique overpartition in B̄. The least part of these
overpartitions in B̄ are not overlined. Conversely, for each overpartition in B̄ with the least part
not overlined, if we subtract 1 form the least part, then there corresponds a unique overpartition
in Ā. Let us denote this class of B̄ by B̄1.

(b) The least part is overlined. In this case we add 1 to the largest part. Then for each of these
overpatitions there corresponds a unique overpartition in B̄. Let us denote this class of B̄ by
B̄2. Conversely, we subtract 1 from the largest part of the overpatitions in B̄2.

So, in B̄ − B̄1
⋃

B̄2, we are left with the overpartitions, where,

(1) the least part is overlined,
(2) the first and second largest parts are equal, or they are consecutive with the property that the

second largest part is overlined. (Note that, the later case is necessary because of the converse
part of the above Case (b). Since, if we subtract 1 from the largest part, then the overpartitions
become of the form a+ ā+ · · · or ā+ ā+ · · · .)

Therefore, |B̄ − B̄1
⋃

B̄2| = ū(n+ 1). Hence, p̄(n)− ā2(n) = p̄(n+ 1)− p̄(n)− ū(n+ 1). □

For the sake of completeness, the generating function for ū(n) is

∞∑
n=1

ū(n)qn =
∞∑
k=1

∞∑
t=1

qk(1 + qk+1)(1 + qk+2) · · · (1 + qk+t−1)(q2(k+t) + q2(k+t))

(1− qk+1)(1− qk+2) · · · (1− qk+t−1)(1− qk+t)

+
∞∑
k=1

∞∑
t=2

qk(1 + qk+1)(1 + qk+2) · · · (1 + qk+t−2)qk+t−1(qk+t + qk+t)

(1− qk+1)(1− qk+2) · · · (1− qk+t−1)

+
∞∑
k=1

qk(qk+1 + qk+1)

=
∞∑
k=1

∞∑
t=1

2q3k+2t(−qk+1; q)t−1

(qk+1; q)t
+

∞∑
k=1

∞∑
t=2

2q3k+2t−1(−qk+1; q)t−2

(qk+1; q)t−1
+

∞∑
k=1

2q2k+1

=2
∞∑
k=1

(
q2k+1

(qk+1; q)1
+

∞∑
t=2

q3k+2t−1(1 + q)
(−qk+1; q)t−2

(qk+1; q)t

)
.

Let us now define by p̄(n, t) to be the number of overpartitions of n where the difference between
the largest and smallest parts equal t. Analogous to Proposition 1.2 we have the following result.

Theorem 5.2. For all n ≥ 1, we have

2ā2(n) = p̄(2n, n).

Proof. Following a similar method as Dhar [Dha21], here we get a one-to-two correspondence between
the overpartitions counted by ā2(n) and the overpatitions counted by p̄(2n, n).

We add n to the rightmost smallest part of each overpartition in the set counted by ā2(n). For
example, if k̄ + k is a part in a partition in this set, then we add n to k. Then the new overpartition
belongs to the set counted by p̄(2n, n) and its largest part is not overlined, which is greater than all
other parts. So corresponding to this overpartition there is another unique overpatition in the second
set, all of whose parts are same except now the largest part is overlined. □
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If we define ām(n, ℓ) to be the number of overpartitions of n where the smallest part occurs at least
m times and the largest part minus the smallest part is ℓ, then using the above method we get the
following theorem, analogous to Proposition 1.8.

Theorem 5.3. For all n ≥ 1 and m ≥ 2, we have

2ām(n) = ām−1(2n, n).

Theorem 5.2 follows from this when m = 2.

5.2. ℓ-regular partitions. The partitions of n with no parts divisible by ℓ are called ℓ-regular parti-
tions, and the total number of such partitions is denoted by bℓ(n). We have the following generating
function

∞∑
n=0

bℓ(n)q
n =

∞∏
n=1

1− qℓn

1− qn
=

(qℓ; qℓ)∞
(q)∞

=
1

(q, q2, . . . , qℓ−1; qℓ)∞
,

where

(a1, a2, . . . , ak; q)∞ :=
k∏

i=1

(ai; q)∞.

Let us define am(ℓ)(n) to be the number of ℓ-regular partitions of n where the smallest part occurs
at least m times. We get the generating function of am(ℓ)(n) as follows

∞∑
n=1

am(ℓ)(n)q
n =

∞∑
k=0

ℓ−1∑
t=1

q(ℓk+t)m∏t−1
r=1(q

ℓ(k+1)+r; qℓ)∞ ×
∏ℓ−1

r=t(q
ℓk+r; qℓ)∞

=
∞∑
k=0

ℓ−1∑
t=1

q(ℓk+t)m(qℓk+1; q)t−1

(qℓk+1, qℓk+2, . . . , qℓk+ℓ−1; qℓ)∞
.

If ℓ = 2, then the partitions contain no even parts. In this case, we get

∞∑
n=1

am(2)(n)q
n =

qm

(q; q2)∞

∞∑
k=0

(q; q2)kq
2km.

Analogous to Proposition 1.1, we now have the following result.

Theorem 5.4. For all n ≥ 1, we have

a2(2)(n) = b2(n) + b2(n+ 1)− b2(n+ 2).

Proof. The quantity b2(n)− a2(2)(n) counts the 2-regular partitions of n in which the least part occurs
exactly once. Again, b2(n+2)− b2(n+1) counts the 2-regular partitions of n+2 in which there is no 1
as a part. These two quantities are equal. We add 2 to the least part of the 2-regular partitions counted
by b2(n)− a2(2)(n). And conversely we subtract 2 from the least part of the 2-regular partitions given
by b2(n+ 2)− b2(n+ 1). □

Let us now define am(ℓ)(n, k) to be the number of ℓ-regular partitions of n where the smallest part
occurs at least m times and the largest part minus the smallest part is k, then like before we get the
following theorem, analogous to Propositions 1.2 and 1.8.

Theorem 5.5. If m, ℓ ≥ 2, and n is divisible by ℓ, then

a2(ℓ)(n) = bℓ(2n, n).

More generally,

am(ℓ)(n) = am−1(ℓ)(2n, n).

This result is not true if n is not divisible by ℓ, since the sum of the smallest part and n may be divisible
by ℓ. For example, b2(2n, n) = 0 if n is odd. But, we get the following more general result in this case.
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Theorem 5.6. If n is odd, then

a2(2)(n) = b2(2n+ 1, n+ 1).

More generally, let m, ℓ ≥ 2, and n is not divisible by ℓ. If n = ℓk + r, for some interger k and
1 ≤ r < ℓ, then

am(ℓ)(n) = a(m−1)(ℓ)(2n+ ℓ− r, n+ ℓ− r).

6. Concluding Remarks

Several natural questions arise from the work we have described so far. Some of these we list below.

(1) Proposition 1.8 is a very simple generalization. Is it possible to find am(n) in terms of partition
functions such as p(an, bn), where a, b are positive integers?

(2) Is it possible to find generating functions of analogues of am(n) (and other statistics defined
here) for other partition functions such as (ℓ,m)-regular partitions, t-core partitions, partition
with designated summands, k-colored partitions, etc.?

(3) Dhar [Dha21] pointed out that the generating function of p(2n, n) is still not found in a ‘nice’
closed form. Similarly, the generating function of am(2n, n) is also not found here. Can we find
these?

(4) Is it possible to find q-series proofs of the results in Section 5 which are proved combinatorially?
(5) Is it possible to find am(2)(n), a2(ℓ)(n), and am(ℓ)(n) for m, ℓ > 2?
(6) If an overlined part is not equal to a non-overlined part, even if their value is equal (for example

1̄ ̸= 1), then the following is the generating function of ām(n)
∞∑
n=1

ām(n)qn =

∞∑
k=1

qmk(−qk)∞
(qk)∞

.

Then, can we find ā2(n) and ām(n)?
(7) We can prove for n ≥ 1,

p(2n, n) = 1 + p(n− 2) +

⌊n
3
⌋∑

m=2

p⋆m(n− 2m),

where p⋆m(n−2m) is the number of partitions of n−2m with the least part greater than or equal
to m. Are there any interesting properties of am(n, ℓ) that can be proved using this relation?

(8) Andrews, Beck and Robbins [ABR15, Theorem 2] also give a generalization of Theorem 4.1
(m = 1) to partitions with a set of specified distances. It would be interesting to explore this
direction with some of the statistics defined in this paper.

(9) Breuer and Kronholm [BK16] extended the result of Andrews, Beck and Robbins [ABR15] to
partitions where the fixed difference between the largest and smallest parts is at most a fixed
integer. Chapman [Cha16] gave a combinatorial proof of this result. It would be interesting to
extend this setting for the statistics defined in this paper.
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