
REFINEMENT OF SOME PARTITION IDENTITIES OF MERCA AND YEE

PANKAJ JYOTI MAHANTA AND MANJIL P. SAIKIA

Abstract. Recently, Merca and Yee proved some partition identities involving two new parti-
tion statistics. We refine these statistics and generalize the results of Merca and Yee. We also
correct a small mistake in a result of Merca and Yee.

1. Introduction

A partition of an integer n, is a sequence of weakly decreasing positive integers such that they
sum up to n. The terms of the sequence are called parts and a partition λ of n is denoted by
λ ` n. We denote by p(n), the number of partitions of n. For instance, 2 + 2 + 1 is a partition
of 5 and p(5) = 7. A masterful treatment of this topic is in the book by Andrews [And98].

There is a rich history and literature on partitions with various statistics attached to them.
Recently, Merca and Yee [MY20] studied several such statistics and proved several interesting
results (both analytially and combinatorially). The aim of this paper is to refine the results
of Merca and Yee [MY20] by putting in additional constraints on the partition statistics they
studied.

The following functions are of interest in this paper.

Definition 1. For a positive integer n, we define

(1) ak(n) to be the sum of the parts which are divisible by k counted without multiplicity in
all the partitions of n,

(2) ak,p(n) to be the sum of the parts which are congruent to p (mod k) counted without
multiplicity in all the partitions of n, and

(3) bk(n) to be the sum of the distinct parts of n that appear at least k times in all the
partitions of n.

For example, a3(5) = 6, a3,0(5) = 6, a3,1(5) = 9, a3,2(5) = 11 and b3(5) = 2, which can be seen
from the fact that the partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Merca and Yee [MY20] studied related functions, in particular they studied a(n), the sum of
parts counted without multiplicity in all the partitions of n and b(n), the sum of distinct parts
that appear at least 2 times in all the partitions of n. It is clear from the definition that

a(n) =
k−1∑
p=0

ak,p(n),

and b2(n) = b(n). So, ak,p(n) and bk(n) can be said to be refinements of a(n) and b(n). They
also studied the function a2,0(n) and a2,1(n) which they denoted by ae(n) and ao(n) respectively.
We will keep their notation for these special cases in the remainder of this paper.
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Merca and Yee [MY20] found the generating functions of a(n), ae(n), ao(n) and b(n), connected
these functions in terms of very simple relations and then further connected the function b(n) to
two other partition functions M`(n) and MP`(n), which we will define in the next section. The
aim of the present paper is to generalize all of these results for our refined functions ak,p(n) and
bk(n). While doing this, we also correct a minor error in a result of Merca and Yee [MY20].

The rest of the paper is organized as follows: in Section 2 we state all of our results and
show as corollaries all of the results of Merca and Yee [MY20], in Section 3 we prove our results
using analytical techniques, in Section 4 we prove all but one of our results using combinatorial
techniques, and finally we end the paper with some remarks in Section 5. We closely follow the
techniques used by Merca and Yee [MY20] in our proofs.

2. Results and Corollaries

We need the notation for the q-Pochhammer symbol

(a; q)∞ =
∞∏
n=0

(1− aqn) for |q| < 1.

The generating functions for ak(n), ak,p(n) and bk(n) are given in the following theorem.

Theorem 2.1. We have
∞∑
n=1

ak(n)qn =
1

(q; q)∞
· kqk

(1− qk)2
,

∞∑
n=1

ak,p(n)qn =
1

(q; q)∞
· (pqp−k + (k − p)qp)qk

(1− qk)2
,

∞∑
n=1

bk(n)qn =
1

(q; q)∞
· qk

(1− qk)2
.

From the above theorem (as well as combinatorially, which we will prove later) the following
result follows.

Theorem 2.2. For all n ≥ 1, we have

(1) ak(n) = kbk(n), and
(2) ak,p(n) = (k − p)bk(n− p) + pbk(n+ k − p).

As easy corollaries of the above results, two results of Merca and Yee [MY20] follow.

Corollary 2.3 (Theorem 1.2, [MY20]). We have
∞∑
n=1

ae(n)qn =
∞∑
n=1

a2,0(n)qn =
1

(q; q)∞
· 2q2

(1− q2)2
,

∞∑
n=1

ao(n)qn =
∞∑
n=1

a2,1(n)qn =
1

(q; q)∞
· q(1 + q2)

(1− q2)2
,

and
∞∑
n=1

a(n)qn =
1

(q; q)∞
· q

(1− q)2
.

Corollary 2.4 (Theorem 1.3, [MY20]). For all n ≥ 1, we have

(1) ae(n) = a2,0(n) = 2b(n),
(2) ao(n) = a2,1(n) = b(n+ 1) + b(n− 1), and
(3) a(n) = a2,0(n) + a2,1(n) = b(n+ 1) + 2b(n) + b(n− 1).
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Andrews and Merca [AM12] introduced a new partition function M`(n), which counts the
number of partitions of n where ` is the least positive integer that is not a part and there are
more parts which are greater than ` than there are parts less than `. For instance M3(5) = 0.
We can connect this function with bk(n) in the following way.

Theorem 2.5. For any positive integer k, ` and n, we have

(−1)`−1

 ∑̀
j=−(`−1)

(−1)jbk(n− j(3j − 1)/2)− 1 + (−1)[n≡0 (mod k)]+1

2
· n
k

 =

bn/kc∑
j=1

jM`(n− kj),

where we have used the Iverson bracket, [P ] which returns the value 1 if the logical proposition
P is satisfied, and returns 0 otherwise.

The following are two easy corollaries of the above theorem.

Corollary 2.6. For any positive integer k, ` and n, we have

(−1)`−1

 ∑̀
j=−(`−1)

(−1)jbk(n− j(3j − 1)/2)− 1 + (−1)[n≡0 (mod k)]+1

2
· n
k

 ≥ 0.

Corollary 2.7. For any positive integer k and n, we have
∞∑

j=−∞

(−1)jbk(n− j(3j − 1)/2) =
1 + (−1)[n≡0 (mod k)]+1

2
· n
k
.

From the above theorem and corollaries, the following results follow easily.

Corollary 2.8 (Theorem 1.4, [MY20]). For any positive integers ` and n, we have

(−1)`−1

 ∑̀
j=−(`−1)

(−1)jb(n− j(3j − 1)/2)− 1 + (−1)n

2
· n

2

 =

bn/2c∑
j=1

jM`(n− 2j).

Corollary 2.9 (Corollary 1.5, [MY20]). For any positive integers ` and n, we have

(−1)`−1

 ∑̀
j=−(`−1)

(−1)jb(n− j(3j − 1)/2)− 1 + (−1)n

2
· n

2

 ≥ 0.

Corollary 2.10 (Corollary 1.6, [MY20]). For any positive integer n, we have
∞∑

j=−∞

(−1)jb(n− j(3j − 1)/2) =
1 + (−1)n

2
· n

2
.

Andrews and Merca [AM18] studied a new partition function MP`(n), which counts the
number of partitions of n in which the first part larger than 2k− 1 is odd and appears exactly k
times, and all other parts appear at most one time. For instance, MP3(5) = 3. We can connect
the function bk(n) with MP`(n) using a new function ck(n) in the following way.

Theorem 2.11. For any positive integer k, ` and n, we have

(−1)`−1

(
2`−1∑
j=0

(−1)
j(j+1)

2 bk(n− j(j + 1)/2)− 1 + (−1)[n≡0 (mod k)]+1

2
· ck(n)

)

=
n∑
j=0

ck(j)MP`(n− j),
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where we have used the Iverson bracket, [P ] which returns the value 1 if the logical proposition
P is satisfied, and returns 0 otherwise, and the function ck(n) is defined as

ck(n) =

bn/kc∑
j=1

jQ

(
n− kj

2

)
,

and Q(m) denotes the number of partitions of m into distinct parts. Here Q(x) = 0 if x /∈ N.

The following are two easy corollaries of the above theorem.

Corollary 2.12. For any positive integers k, ` and n, we have

(−1)`−1

(
2`−1∑
j=0

(−1)
j(j+1)

2 bk(n− j(j + 1)/2)− 1 + (−1)[n≡0 (mod k)]+1

2
· ck(n)

)
≥ 0.

Corollary 2.13. For positive integers n and k, we have
∞∑
j=0

(−1)
j(j+1)

2 bk(n− j(j + 1)/2) =
1 + (−1)[n≡0 (mod k)]+1

2
· ck(n).

From the above theorem and corollaries, the following results of Merca and Yee [MY20] follows
as corollaries. Here we have corrected the exponent of the −1 inside the summation in the left

hand side, which is
j(j + 1)

2
, but was mentioned as j by Merca and Yee [MY20].

Corollary 2.14 (Theorem 1.7, [MY20]). For any positive integer ` and n, we have

(−1)`−1

(
2`−1∑
j=0

(−1)
j(j+1)

2 b(n− j(j + 1)/2)− 1 + (−1)n

2
· c
(n

2

))
=

bn/2c∑
j=1

c(j)MP`(n− 2j),

where c(n) is the number of subsets of {1, 2, . . . , n} which contains a number that is greater than
the sum of the other numbers in the subset.

Proof. We notice that

c2(2n) =
n∑
j=1

jQ(n− j) =
n−1∑
m=0

(n−m)Q(m),

which was shown to be equal to c(n) in the proof of Theorem 4.1 in Merca and Yee’s [MY20]
work. So, we have c2(n) = c

(
n
2

)
. Putting k = 2 in Theorem 2.11 we get the result. �

Corollary 2.15 (Corollary 4.2, [MY20]). Let ` and n be positive integers, then we have

(−1)`−1

(
2`−1∑
j=0

(−1)
j(j+1)

2 b(n− j(j + 1)/2)− 1 + (−1)n

2
· c
(n

2

))
≥ 0.

Corollary 2.16 (Corollary 4.3, [MY20]). Let n be a positive integer, then we have

∞∑
j=0

(−1)
j(j+1)

2 b(n− j(j + 1)/2) =
1 + (−1)n

2
· c
(n

2

)
.

3. Analytical Proofs of our Main Results

In this section, we prove all the theorems stated in the previous section, using analytical
methods. Our proofs follow closely the techniques used by Merca and Yee [MY20].
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3.1. Proof of Theorems 2.1 and 2.2. We prove the generating functions for bk(n) and ak(n)
in details, and leave that of ak,p(n) to the reader as the details are similar but with more algebraic
manipulation.

We start with the generating function for partitions where the power of z keeps track of parts
with multiplicity ≥ k,

∞∏
j=1

(1 + qj + q2j + · · ·+ q(k−1)j + zj(qkj + q(k+1)j + · · · )) =
∞∏
j=1

(
qkj − 1

qj − 1
+ zj

qkj

1− qj

)

=
1

(q; q)∞

∞∏
j=1

(1 + (zj − 1)qkj).

Now, taking the derivative w.r.t. z and setting z → 1 we get,

∞∑
n=1

bk(n)qn =
1

(q; q)∞

∞∑
j=1

jqkj =
1

(q; q)∞
· qk

(1− qk)2
.

In a similar way, we have

∞∑
n=1

ak(n)qn =
d

dz

∞∏
j=1

(1 + zkj(qkj + q(k+1)j + · · · ) |z=1

=
d

dz

∞∏
j=1

(
1 + zkj

qkj

1− qj

) ∣∣∣∣
z=1

=
1

(q; q)∞

∞∑
j=1

kjqkj

=
1

(q; q)∞
· kqk

(1− qk)2
.

Theorem 2.2 immediately follows from Theorem 2.1, we just compare coefficients.

3.2. Proof of Theorem 2.5. The generating function for M`(n) was found by Andrews and
Merca [AM12], when they studied a truncated version of Euler’s pentagonal number theorem

(−1)`−1

(q; q)∞

∑̀
n=−(`−1)

(−1)nqn(3n−1)/2 = (−1)`−1 +
∞∑
n=`

q(
`
2)+(`+1)n

(q; q)n

[
n− 1

`− 1

]
, (3.1)

where ` ≥ 1, (a; q)n =
(a; q)∞

(aqn; q)∞
and the Gausssian binomial

[
n
`

]
equals

(q; q)n
(q; q)`(q; q)n−`

whenever

0 ≤ ` ≤ n and is 0 otherwise. The sum on the right hand side of equation (3.1) is the generating
function of M`(n), that is

∞∑
n=0

M`(n)qn =
∞∑
n=`

q(
`
2)+(`+1)n

(q; q)n

[
n− 1

`− 1

]
. (3.2)

We now multiply both sides of equation (3.1) by

∞∑
n=0

nqkn =
qk

(1− qk)2
,
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which gives us (after using equation (3.2)),

(−1)`−1

( ∞∑
n=1

bk(n)qn

) ∑̀
n=−(`−1)

(−1)nqn(3n−1)/2

− ∞∑
n=0

nqkn


=

(
∞∑
n=0

nqkn

)(
∞∑
n=0

M`(n)qn

)
.

Using Cauchy product of two power series, Theorem 2.5 follows from the above.

3.3. Proof of Theorem 2.11. The generating function for MP`(n) was found by Andrews and
Merca [AM18] when they considered a truncated theta identify of Gauss,

(−q; q2)∞
(q2; q2)∞

2`−1∑
j=0

(−q)j(j+1)/2 = 1 + (−1)`−1 (−q; q2)`
(q2; q2)`−1

∞∑
j=0

q`(2`+2j+1)(−q2`+2j+3; q2)∞
(q2`+2j+2; q2)∞

. (3.3)

The sum on the right hand side of equation (3.3) is the generating function of MP`(n).

We now multiply both sides of equation (3.3) by
qk

(1− qk)2
·(−q2; q2)∞ and deduce the following

identity

(−1)`−1

((
∞∑
n=0

bk(n)qn

)(
2`−1∑
n=0

(−q)n(n+1)/2

)
− qk

(1− qk)2
· (−q2; q2)∞

)

=

(
qk

(1− qk)2
· (−q2; q2)∞

)( ∞∑
n=0

MP`(n)qn

)
. (3.4)

We know that the generating function of the number of partitions into distinct parts is

∞∑
n=0

Q(n)qn = (−q; q)∞.

Using this, we have

qk

(1− qk)2
· (−q2; q2)∞ =

∞∑
n=0

nqkn ·
∞∑
m=0

Q(m)q2m

=
∞∑
n=0

bn/kc∑
j=1

jQ

(
n− kj

2

)
qn

=
∞∑
n=0

ck(n)qn.

Putting this in equation (3.4) we get,

(−1)`−1

((
∞∑
n=0

bk(n)qn

)(
2`−1∑
n=0

(−q)n(n+1)/2

)
−
∞∑
n=0

ck(n)qn

)

=

(
∞∑
n=0

ck(n)qn

)(
∞∑
n=0

MP`(n)qn

)
.

Using the Cauchy product of two power series, Theorem 2.11 follows from the above.
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4. Combinatorial Proofs of some of our Results

In this section we give combinatorial proofs of all but one (Theorem 2.11) of our results. The
approach again closely follows that of Merca and Yee [MY20].

4.1. Proof of Theorem 2.2. For part (1), we note that for a partition λ ` n, if ka is a part
of λ then we split this part into k a’s while keeping the remaining parts of λ unchanged. Let us
call the new partition µ, then clearly the part a has multiplicity at least k in µ, so we get

ak(n) =
∑
λ`n

different parts divisble by k

= k
∑
µ`n

differents parts with multiplicity ≥ k = kbk(n).

For part (2), let ka + p be a part of λ ` n which is counted in ak,p(n). We now split ka into
k a’s while keeping the remaining parts unchanged to get a new partition µ ` n− p. Again, we
split (ka + p) + (k − p) into k (a + 1)’s while keeping the remaining parts unchanged to get a
new partition ν ` n+ k − p. We have

ak,p(n) =
∑
λ`n

different parts ≡ p (mod k)

= (k − p)
∑
µ`n−p

different parts with multiplicity ≥ k

+ p
∑

ν`n+k−p

different parts with multiplicity ≥ k

= (k − p)bk(n− p) + pbk(n+ k − p).

4.2. Proof of Theorem 2.1. We prove the generating function for ak(n) here, the other two
generating functions can be proved combinatorially by combining the previous subsection with
this proof. In fact, our proof is the same when 2 is replaced by k in the proof of Corollary 2.3
given by Merca and Yee [MY20], so for the sake of brevity we just outline the steps.

We work with two sets of overpartitions, let P̄k(n) be the set of overpartitions of n where
exactly one part divisible by k is overlined, and let Āk(n) be the set of colored overpartitions of
n where exactly one part divisible by k is overlined and at most one other part divisible by k is
colored with blue color. For instance, we have

P̄3(6) = {6̄, 3̄ + 3, 3̄ + 2 + 1, 3̄ + 1 + 1 + 1},
and

Ā3(6) = {6̄, 3̄ + 3, 3̄ + 3, 3̄ + 2 + 1, 3̄ + 1 + 1 + 1}.
Clearly, P̄k(n) is a subset of Āk(n), and we have

ak(n) =
∑

λ∈P̄k(n)

the overlined part of λ. (4.1)

Also note that for each partition in Āk(n) we can decompose it into a tuple (λ, µ, ν) where λ
is the overline part, µ is the colored part and ν are the non-colored parts. This gives us∑

n≥0

Āk(n)qn =
qk

(1− qk)
· 1

(1− qk)
· 1

(q; q)∞
. (4.2)

We now set up the following surjection from Āk(n) to P̄k(n): if there is a colored part, we
merge it with the overlined part to get a resulting overlined part. The new partition is clearly
in P̄k(n), and if there are no colored parts then we keep the partition unchanged. Now, for an
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overlined part ka of µ ∈ P̄k(n), there are a ways to merge an overlined part with a colored part
to get ka, so we have ∑

µ∈P̄k(n)

the overline part of µ =
∑

ν∈Āk(n)

k. (4.3)

From equations (4.1), (4.2) and (4.3) we get∑
n≥0

ak(n)qn =
1

(q; q)∞
· kqk

(1− qk)2
.

4.3. Proof of Theorem 2.5. Again, our proof is similar to the proof of Corollary 2.6, given
by Merca and Yee [MY20], so we mention the main steps without going into too much details.
Theorem 2.5 is equivalent to the following

(−1)`−1

 ∑̀
j=−(`−1)

(−1)j

 ∑
λ∈P̄k(n−j(3j−1)/2

overlined part of λ

− 1 + (−1)[n≡0 (mod k)]+1

2
· n


=

bn/kc∑
j=1

kjM`(n− kj),

where we have used Theorem 2.2 and equation (4.1).
We note that∑

λ∈P̄k(n)

overlined part of λ =

bn/kc∑
m=1

km
∑

µ`(n−km)

1 =

bn/kc∑
m=1

km · p(n− km).

The above equation is true since any partition λ ∈ P̄k(n) can be made into a pair of partitions
(ν, µ) where ν is the overlined part and µ is then an ordinary partition.

So, we get

(−1)`−1
∑̀

j=−(`−1)

(−1)j

 ∑
λ∈P̄k(n−j(3j−1)/2

overlined part of λ


= (−1)`−1

∑̀
j=−(`−1)

(−1)j
b(n−j(3j−1)/2)/2c∑

m=1

km · p(n− j(3j − 1)/2− km).

The above is equivalent to

bn/kc∑
m=1

km

(−1)`−1
∑̀

j=−(`−1)

(−1)jp(n− km− j(3j − 1)/2)

 , (4.4)

where we rearrange the summation and take p(n) = 0 if n < 0.
Merca and Yee [MY20] have given a combinatorial proof of the truncated pentagonal number

theorem, which is equivalent to the following identity

(−1)`−1

`−1∑
j=0

)(−1)j(p(n− j(3j + 1)/2)− p(n− (j + 1)(3j + 2)/2)) = M`(n). (4.5)

Using equation (4.5) in (4.4), we get that (4.4) is equal to

bn/kc∑
m=1

km ·M`(n− km) + (−1)`−1 · 1 + (−1)[n≡0 (mod k)]+1

2
· n,
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which proves the result, since equation (4.5) already has a combinatorial proof. We need the
term (−1)`−1n when n ≡ 0 (mod k) because, if n = kr for some r and m = n/k, then without
this term we get

(−1)`−1np(0) = nMk(0)⇒ n = 0.

5. Concluding Remarks

(1) A combinatorial proof of Theorem 2.11 is left as an open problem. Any combinatorial
proof of Theorem 2.11 would hinge on a combinatorial interpretation of ck(n), like we have
for c2(2n). So, a first step towards a combinatorial proof would be such an interpretation
of ck(n).

(2) Identities of the type in Theorems 2.5 and 2.11 are also known for some other partition
statistics, for instance one can see some recent work of Merca [Mer20]. It would be
interesting to see if one can relate such partition statistics with the ones introduced in
this paper.
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