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Abstract. We prove an in�nite family of lacunary recurrences for the Lucas numbers using combi-
natorial means.

1. Introduction

A recurrence relation involving only terms of a given sequence with indices in arithmetic progression
is called a lacunary recurrence. The gap of such a lacunary recurrence is the common di�erence in the
indices in arithmetic progression. Several such lacunary recurrences are known for sequences including
but not limited to Bernoulli numbers, Euler numbers, k-Fibonacci numbers, etc. We refer the reader
to the recent paper of Ballantine and Merca [BM19] for relevant references and other examples.

Ballantine and Merca [BM19] proved an in�nite family of lacunary recurrences for Fibonacci num-
bers. They closed the paper by asking the natural question of whether such an in�nite family of
lacunary recurrences can be found for the Lucas numbers. The aim of this article is to prove such
an in�nite family of lacunary recurrences. Before stating and proving our result, let us recall some
de�nitions and relations.

The Fibonacci sequence fFngn�0 de�ned by the recurrence relation

Fn = Fn�1 + Fn�2;

with F0 = 0 and F1 = 1. We use the convention Fn = 0 when n < 0. Similarly, the Lucas sequence
fLngn�0 de�ned by the recurrence relation

Ln = Ln�1 + Ln�2;

with L0 = 2 and L1 = 1. We use the convention Ln = 0 when n < 0. These two sequences are related
by the identity

Ln = Fn�1 + Fn+1: (1)

Several interesting relationships between Fibonacci numbers are known, two of them, which are
relevant for this paper are

Fm+n = FmFn+1 + Fm�1Fn; (2)

and

(�1)nFm�n = FmFn+1 � Fm+1Fn: (3)

For these and many other identities we refer the reader to Honsberger's book [Hon85, Chapter 8] and
to the more recent book by Koshy [Kos18, Chapter 5]. The second identity (3) is called d'Ocagne's
identity.
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Lucas in 1876 proved a lacunary recurrence of gap 2 for the Fibonacci numbers in the following
equivalent form

Fn =
1 + (�1)n

2
+ Fn�2 +

bn�1
2
cX

k=1

Fn�2k:

This was generalized by Ballantine and Merca [BM19] to the following

Theorem 1.1. [BM19, Theorem 1] Given a positive integer N � 2, we have

Fn = FN � F
bn�1
N

c+1

N�1 � F(n�1) mod N + FN+1 � Fn�N + F 2
N �

bn�1
N

cX
k=2

F k�2
N�1 � Fn�kN ;

for all n � N .

This result is also valid for Pell numbers (as remarked in Section 3).
It is quite natural to ask, as did Ballantine and Merca [BM19] if a similar result holds for the Lucas

numbers? We now present such a result in the following theorem.

Theorem 1.2. Given a positive integer N � 2, we have

Ln = LN

dX
i=1

(�1)(N+1)(i+1)Ln�(2i�1)N + (�1)(N+1)(d+2)Ln�2dN ; (4)

where d =

��
n

N

�
=2

�
and

n

2
� N � 0.

A simple consequence of the above theorem is the following congruence.

Corollary 1.3. For a given integer N � 2 we have

Ln � (�1)(N+1)(d+2)Ln�2dN � 0 (mod LN );

where d =

��
n

N

�
=2

�
and

n

2
� N � 0.

2. A Combinatorial Proof of Theorem 1.2

It is well-known that the Fibonacci numbers can be interpreted as tilings of an 1 � n board with
squares and dominoes. We call such a board an n-board. If the number of such tilings is fn, then it
can be proved that Fn+1 = fn (see for instance, the book by Benjamin and Quinn [BQ03]). With this
notation, equations (2) and (3) now becomes

fmfn + fm�1fn�1 = fm+n (5)

and
fm�1fn � fmfn�1 = (�1)nfm�n�1 (6)

Both these identities can be easily proven using the combinatorial interpretation of fk.
It is also known (see Chapter 2 of the book by Benjamin and Quinn [BQ03]) that the number ln

of ways to tile a circular board composed of n labelled cells with curved squares and dominoes is
equal to Ln. We call such a tiling of the circular n-board to be an n-bracelet. There are two types
of bracelets, an in-phase or an out-of-phase. A bracelet is out-of-phase if a domino covers the cells
numbered n and 1, and it is called in-phase if it is not out-of-phase. An example of an out-of-phase
4-bracelet and an in-phase 4-bracelet is shown in Figure 1, where dominoes are coloured black and
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Figure 1. Examples of bracelets.

Figure 2. The two sets of bracelets considered in the proof of Theorem 1.2.

squares are white. We note that an in-phase tiling of an n-bracelet can be made into a tiling of an
n-board. From this observation it is easy to see the validity of equation (1). We are now in a position
to prove Theorem 1.2.

Proof of Theorem 1.2. Let us draw two sets of circular boards as shown in Figure 2, and call them
Set 1 and Set 2. We mark the cells as shown in Figure 2. The number of bracelets of Set-1 is Ln and
of Set-2 is LN � Ln�N , where

n

2 � N � 0:
We can break the tilings of Set-2 in the following four parts:

(a) fN � fn�N : (Here both the N -bracelet and (n�N)-bracelets are in-phase.)
(b) fN�2 � fn�N : (Here only the N -bracelet is out-of-phase.)
(c) fN � fn�N�2: (Here only the (n�N)-bracelet is out-of-phase.)
(d) fN�2 � fn�N�2: (Here both are out-of-phase.)

Observe that the tilings of (a) can be made into tilings of the n-bracelet in such a way that the
N -board covers the cells of the n-bracelet from a1 to aN : And hence the (n � N)-board covers the
remaining cells of the n-bracelet. In these tilings of the n-bracelet, there is no domino which covers
the cells a0 and a1 or aN and aN+1.

Observe that the tilings of (b) can be made into tilings of the n-bracelet in such a way that a domino
covers the cells a0 and a1, and the N -board covers the cells from a0 to aN�1: So, the (n�N)-board
covers the remaining cells of the n-bracelet. In these tilings no domino covers the cells aN�1 and aN :
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There are only two types of tilings that remains in the set of all tilings of the n-bracelet, apart from
the ones discussed above:

(1) Tilings where one domino covers the cells a0 and a1 and another domino covers the cells aN�1
and aN . The total number of such tilings is fN�3fn�N�1.

(2) Tilings where one domino covers the cells aN and aN+1, but no domino covers the cells a0 and
a1. The total number of such tilings is fn�2 � fN�2fn�N�2:

Let us now compute the di�erence (say A) between the total tilings of (1) and (2) and that of the
total tilings in (c) and (d)

A := (fN�3fn�N�1 + fn�2 � fN�2fn�N�2)� (fNfn�N�2 + fN�2fn�N�2)

= fN�3fn�N�1 + f(N�1)+(n�N�1) � 2fN�2fn�N�2 � fNfn�N�2:

Using equation (5) above we get

A =fN�3fn�N�1 + fN�1fn�N�1 + fN�2fn�N�2 � 2fN�2fn�N�2 � fNfn�N�2

=� (fn�N�2fN�2 � fn�N�1fN�3)� (fn�N�2fN � fn�N�1fN�1):

Using equation (6) above we get

A =� (�1)N�2f(n�N�1)�(N�2)�1 � (�1)Nf(n�N�1)�N�1

=(�1)N�1fn�2N + (�1)N+1fn�2N�2

=(�1)N+1Ln�2N :

In the last step we used equation (1). Hence

fN�3fn�N�1 + fn�2 � fN�2fn�N�2 = fNfn�N�2 + fN�2fn�N�2 + (�1)N+1Ln�2N :

Finally, adding the total number of the other tilings (namely those in (a) and (b)) to both sides of
the above we get

Ln = LN � Ln�N + (�1)N+1Ln�2N : (7)

The left hand side follows because the number of tilings in (1), (2), (a) and (b) is Ln, while the right
hand side follows because the number of tilings in (a){(d) is LN � Ln�N . Replacing n by n� 2N in
(7), we get

Ln�2N = LNLn�3N + (�1)N+1Ln�4N : (8)

Therefore, from equations (7) and (8), we get

Ln = LNLn�N + (�1)N+1LNLn�3N + Ln�4N :

Again,

Ln�4N = LNLn�5N + (�1)N+1Ln�6N :

So, we have

Ln =LNLn�N + (�1)N+1LNLn�3N + LNLn�5N + (�1)N+1Ln�6N

=LNLn�N + (�1)N+1LNLn�3N + LNLn�5N + (�1)N+1LNLn�7N + Ln�8N

=LN
�
Ln�N + (�1)N+1Ln�3N + Ln�5N + (�1)N+1Ln�7N

�
+ Ln�8N :
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This gives us,

Ln = LN
�
(�1)(N+1)(1+1)Ln�N + (�1)(N+1)(2+1)Ln�3N

+(�1)(N+1)(3+1)Ln�5N + (�1)(N+1)(4+1)Ln�7N
�
+ (�1)(N+1)(5+1)Ln�8N :

We can proceed in this way up to the

��
n

N

�
=2

�
-th step. This proves equation (4). �

3. Concluding Remarks

We can combine several known identities involving Lucas and Fibonacci numbers with Theorems
1.1 and 1.2 to give several new results involving more complicated sums. We do not explore this here.

A generalization of the Fibonacci sequence, called the Gibonacci sequence fGngn�0 is given by the
same recurrence

Gn = Gn�1 +Gn�2;

for all n � 2. Changing the initial conditions for G0 and G1 gives rise to di�erent sequences, two of
which are the Fibonacci and Lucas sequences. There exist combinatorial interpretations for such a
Gibonacci sequence, which are similar to the interpretation for the Lucas sequence. It would seem
that by tweaking our proofs, a more general lacunary recurrence could be found for the Gibonacci
sequence. We leave this as an open problem.

Another remark is that, Theorem 1.1 is actually valid also for Pell numbers. The sequence of Pell
numbers fPngn�0 is given by the recurrence

Pn = 2Pn�1 + Pn�2;

with P0 = 1 and P1 = 1. This can be seen from the combinatorial interpretation of Pell numbers
given by Benjamin, Plott and Sellers [BPS08], and combining it with the proof of Ballantine and
Merca [BM19] where the proof is independent of whether we use the combinatorial interpretation of
the Fibonacci numbers or the Pell numbers. Thus, we have the following result.

Theorem 3.1. Given a positive integer N � 2, we have

Pn = PN � P
bn�1
N

c+1

N�1 � P(n�1) mod N + PN+1 � Pn�N + P 2
N �

bn�1
N

cX
k=2

P k�2
N�1 � Pn�kN ;

for all n � N .
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