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S U M M A RY

Mathematicians, specially combinatorialists are always on the lookout for beautiful
structures and formulas. Two such beautiful formulas are respectively the number
of alternating sign matrices (ASMs) of a given order and the number of domino
tilings of Aztec diamonds. Each is given by a simple expression, in the first case it is
a quotients of factorials, while in the second case it is a power of 2. The existence of
formulas of such compelling simplicity and beauty have encouraged mathematicians
to look for further refinements in these objects and enumerate them. This thesis
deals with two such problems which are inspired by the lookout for formulas of
some degree of simplicity and beauty.

In the first part of this thesis, we study refined enumeration of ASMs with respect
to boundary statistics. An ASM of order n is an n× n matrix with entries in the
set {0,±1} with all row and column sums equal to 1 and where non-zero entries
alternate in sign. These matrices were introduced by Robbins and Rumsey, who
together with Mills conjectured a simple product formula for the number of ASMs.
It was noticed already in the 1980s (by Robbins) soon after these type of matrices
were defined that the symmetry classes of ASMs also have very simple product
formula for their numbers. This led Robbins to conjecture several formulas for these
numbers, and the program of proving these formulas was recently completed in
2017.

A moment’s thought yields several simple properties of any ASM. One of these is
that the first row (or any boundary row or column) can contain only one 1, otherwise
the alternating condition is violated. This motivated refined enumeration of ASMs;
that is, the enumeration of a fixed order ASM with the position of the 1 in the first
row (or any other boundary row or column) fixed. This was done by Zeilberger using
techniques that arose from statistical physics models. In the first part of the thesis
we prove such refined enumeration formulas for several symmetry classes of ASMs
(vertically symmetric, vertically and horizontally symmetric, quarter-turn symmetric,
off-diagonally and off-antidiagonally symmetric and vertically and off-diagonally
symmetric), as well as for some closely related classes of matrices (vertically and
horizontally perverse ASMs and quasi quarter-turn symmetric ASMs). Our results
prove conjectures of Robbins, Fischer and Duchon.

In the second part of this thesis, we study domino tilings of Aztec rectangles,
which is a natural extension of an Aztec diamond. The union of all unit squares
inside the contour |x|+ |y| = n+ 1 is called an Aztec diamond of order n. If we
tile such an Aztec diamond using dominoes (which are union of two adjacent unit
squares), then we will get 2(

n+1
2 ) many such tilings which completely cover the

Aztec diamond with no overlapping dominoes or empty spaces in the contour. An
easy generalization of these diamonds is the Aztec rectangle where we extend the
south-east and north-west sides. The resulting figure is not tilable by dominoes.
However, if we remove some squares from one of these extended boundaries then
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we can tile the resulting region using dominoes. The number of such tilings was
already counted by Mills, Robbins and Rumsey.

We look at the more general problem of removing arbitrary many squares from
not one side of such an Aztec rectangle, but from all of the boundary sides. We are
able to prove a Pfaffian formula for the number of such tilings. As corollaries, we
also get such a formula for the number of tilings of Aztec diamonds with arbitrary
boundary squares missing from all sides. The entries of the Pfaffian in both these
cases are given by number of domino tilings of either Aztec rectangles or Aztec
diamonds with specific boundary squares missing (either on two adjacent sides or
two opposite sides). The technique that is used for proving these results is called
Kuo condensation. We also present a generalization of Kuo’s result, which in itself
is a generalization of a result of Ciucu.
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Z U S A M M E N FA S S U N G

Mathematiker, im besonderen Kombinatoriker, sind immer auf der Suche nach
schönen Strukturen und Formeln. Die Abzählformeln für alternierende Vorzeichen-
matrizen (ASMs) einer gewissen Größe sowie für Parkettierungen eines Azteken-
Diamants mittels Dominosteinen sind zwei schöne Beispiele dafür. Beide sind durch
einfache Ausdrücke gegeben: im ersten Fall durch Quotienten von Fakultäten, im
Zweiten durch eine Potenz von 2. Die Existenz von solch einfachen und besonders
schönen Formeln hat Mathematiker ermutigt, Verfeinerungen der ursprünglichen
Objekte zu betrachten und diese abzuzählen. Diese Dissertation behandelt zwei
Problembereiche, welche durch die Suche nach Formeln von besonderer Einfachheit
und Schönheit inspiriert wurden.

Im ersten Teil dieser Dissertation betrachten wir verfeinerte Abzählungen von
ASMs bezüglich Statistiken auf deren Rändern. Eine alternierende Vorzeichenma-
trizen der Ordnung n ist eine n× n Matrix mit Einträgen aus der Menge {0,±1},
sodass alle Spalten- und Zeilensummen gleich 1 sind und die Einträge ungleich 0 in
ihrem Vorzeichen alternieren. Diese Matrizen wurden durch Robbins und Ramsey
eingeführt, die gemeinsam mit Mills eine einfache Produktformel für die Anzahl
der ASM vermuteten. Bereits in den 1980ern, kurz nach der Definition dieser Ma-
trizen, bemerkte Robbins, dass auch die Abzählung der meisten Symmetrieklassen
von ASMs ausgesprochen einfache Produktformeln haben. In weiterer Folge stellte
Robbins Vermutungen für explizite Produktformeln der meisten Symmetrieklassen
auf, deren Beweis erst in 2017 komplettiert wurde.

Durch kurze Überlegungen lassen sich einige einfache Eigenschaften von ASMs
erkennen. Eine solche Eingenschaft ist, dass eine ASM genau einen Eintrag gleich 1

in ihrer ersten Reihe hat; das Gleiche gilt für die letzte Reihe bzw. für die erste oder
letzte Spalte. Dies motivierte eine verfeinerte Abzählung von ASMs, bei welcher die
Position der 1 in der obersten Reihe fixiert ist. Die dazugehörigen Abzählformeln
wurden von Zeilberger unter der Verwendung von Techniken aus der statistischen
Physik bewiesen. In dem ersten Teil dieser Arbeit beweisen wir Abzählformeln für
solche Verfeinerungen einiger Symmetrieklassen von ASMs (vertikal symmetrisch,
vertikal und horizontal symmetrisch, Vierteldrehung symmetrisch, antidiagonal und
abseits-antidiagonal symmetrisch, vertikal und antidiagonal symmetrisch) sowie für
eng verwandte Klassen von Matrizen (vertikal und horizontal symmetrische perver-
se ASMs, quasi Vierteldrehung symmetrische ASMs). Unsere Resultate beweisen
Vermutungen von Robbins, Fischer und Duchon.

Im zweiten Teil dieser Dissertation betrachten wir Parkettierungen von Azteken-
Rechtecken durch Dominosteine. Ein Azteken-Diamant der Größe n ist die Ver-
einigung von allen Quadraten innerhalb der Kontur |x|+ |y| = n+ 1. Man kann
beweisen, dass die Anzahl der vollständigen Parkettierungen ohne Überlappungen
und Löcher eines Azteken-Diamanten mit Dominosteinen, dies sind Vereinigung
von zwei benachbarten Quadraten, gleich 2(

n+1
2 ) ist. Eine einfache Verallgemeinerung

dieser Diamanten sind Azteken-Rechtecke, welche durch Erweitern auf der Südost
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und Nordwest Seite erhalten werden. Die resultierende Figur ist nicht mehr mittels
Dominosteinen parkettierbar, jedoch wird sie es durch das Entfernen von einigen
Quadraten an den erweiterten Rändern. Diese Objekte wurden bereits durch Mills,
Robbins und Rumsey abgezählt.

Wir beschäftigen uns in dieser Arbeit mit einem allgemeineren Problem indem
wir erlauben, dass die Quadrate nicht nur von einer Seite sondern von allen Rändern
des Azteken-Rechtecks entfernt werden dürfen. Für diese Abzählung konnten wir
eine Pfaffsche Formel beweisen. Als Konsequenz davon erhalten wir eine solche
Formel für die Anzahl der Azteken-Diamanten, wobei von allen Seiten Quadrate
entfernt werden dürfen. Die Einträge der Pfaffschen Form zugehörigen Matrix sind
in beiden Fällen durch die Anzahl von Parkettierungen von Azteken-Rechtecken
bzw. Azteken-Diamanten mit spezielle Randbedingungen, die Quadrate dürfen
entweder auf zwei benachbarten oder gegenüberliegenden Seiten entfernt werden,
gegeben. Um dieses Resulatat zu beweisen benützen wir Kuo-Kondensation. Weiters
präsentieren wir eine Verallgemeinerung von Kuos Resultat, welches auch eine
Verallgemeinerung von einem Resultat von Ciucu darstellt.
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1
I N T R O D U C T I O N

The aim of this introduction is to give a brief overview of the objects that are studied
in this thesis and how they relate to each other. In Part i we study alternating sign
matrices (ASMs) and derive refined enumeration formulas for symmetry classes of
these matrices. In Part ii we study domino tilings of Aztec rectangles and enumerate
them when the boundary sides of the Aztec rectangle has arbitrary defects. These
rectangles are obtained by generalizing regions on the square lattice called Aztec
diamonds. It would appear at first glance that the topics of the thesis are not related,
however there is a connection between ASMs and Aztec diamonds which we will
specify shortly.

It is possible to read the individual parts separately after reading this introduction
as they are self-contained in themselves.

1.1 alternating sign matrices

An alternating sign matrix (ASM) of order n is an n×n matrix with entries in the set
{±1, 0} such that all row and column sums are equal to 1 and the non-zero entries
alternate in each row and column. An example of an ASM of order 7 is

0 0 0 1 0 0 0

0 1 0 −1 0 1 0

1 −1 0 1 0 −1 1

0 0 1 −1 1 0 0

0 1 −1 1 −1 1 0

0 0 1 −1 1 0 0

0 0 0 1 0 0 0


.

These matrices, first introduced by David P. Robbins and Howard Rumsey, Jr. in the
1980s, have given rise to a lot of nice enumerative conjectures and results. Robbins,
Rumsey and W. H. Mills [30] conjectured that the number of ASMs of order n is
given by

An :=

n−1∏
i=0

(3i+ 1)!
(n+ i)!

.

This conjecture was later proved by Doron Zeilberger [43] and shortly after also by
Greg Kuperberg [27], using vastly different techniques. A very detailed description
of this conjecture and Kuperberg’s proof can be found in a book by David Bressoud
[8]. Another approach towards proving this result was developed by Ilse Fischer [16,
19].

Richard Stanley [40] suggested the study of symmetry classes of ASMs shortly
after these objects were introduced. This led Robbins [37, 38] to conjecture various

3



4 introduction

product formulas for the different symmetry classes of ASMs. The program of
proving these formulas was accomplished by work of Kuperberg [28], Soichi Okada
[31], A. V. Razumov and Yu. G. Stroganov [33, 35, 36], and recent work of Roger E.
Behrend, Fischer and Matjaž Konvalinka [7].

It is easy to see that there is precisely one occurrence of 1 in the first row of any
ASM. This suggests the study of some refined enumerations of ASMs and symmetry
classes thereof with respect to the position of this 1. The refined enumeration of all
ASMs with the position of the unique 1 in the first row fixed was conjectured by
Mills, Robbins and Rumsey [30] to be(

n+i−2
n−1

)(
2n−i−1
n−1

)(
3n−2
n−1

) An.

This was proven by Zeilberger [44]. In case of the symmetry classes of ASMs, such
type of refinement has been studied for vertically symmetric ASMs and half-turn
symmetric ASMs, both by Razumov and Stroganov [34, 35]. The objective of Part
i of this thesis is to study refined enumeration results of similar kind for several
symmetry classes of ASMs and related classes of matrices.

By reflection, an ASM also has a unique 1 in the last row as well as in the first and
last column. Various mathematicians have studied related refinements, considering
restrictions on a combination of two or more of the boundaries of an ASMs. These
works include but are not limited to those by Arvind Ayyer and Dan Romik [5],
Behrend [6], Fischer [18], Fischer and Romik [20], Razumov and Stroganov [33, 34],
Romik and Matan Karklinsky [23], Stroganov [41], etc. using a variety of tools, but
predominantly techniques that arise in statistical physics, which we will explain in
brief later.

1.2 aztec diamonds

Noam Elkies, Kuperberg, Michael Larsen and James Propp [14] introduced a new
class of objects which they called Aztec diamonds. The Aztec diamond of order n
(denoted by AD(n)) is the union of all unit squares inside the contour |x|+ |y| = n+ 1

(see Figure 1.1 for an Aztec diamond of order 3). A domino is the union of any two
unit squares sharing an edge, and a domino tiling of a region is a covering of the
region by dominoes so that there are no gaps or overlaps. They [14, 15] considered
the problem of counting domino tilings the Aztec diamond with dominoes and
presented four different proofs of the following result.

Figure 1.1: AD(3), the Aztec diamond of order 3.



1.3 connection between asms and aztec diamonds 5

Theorem 1.1. The number of domino tilings of the Aztec diamond of order n is 2n(n+1)/2.

This work subsequently inspired lot of follow ups, including the natural extension
of the Aztec diamond to the Aztec rectangle (see Figure 1.2). We denote by ARa,b the
Aztec rectangle which has a unit squares on the southwestern side and b unit squares
on the northwestern side. In the remainder of this thesis, we assume a 6 b unless
otherwise mentioned. For a < b, ARa,b does not have any tiling by dominoes. The
non-tileability of the region ARa,b becomes evident if we look at the checkerboard
representation of ARa,b (see Figure 1.2). However, if we remove b− a unit squares
from the southeastern side then we have a simple product formula found by Mills,
Robbins and Rumsey [30].

Figure 1.2: Checkerboard representation of an Aztec rectangle with a = 4,b = 10.

Theorem 1.2. Let a < b be positive integers and 1 6 s1 < s2 < · · · < sa 6 b. Then the
number of domino tilings of ARa,b where all unit squares from the southeastern side are
removed except for those in positions s1, s2, . . . , sa is

2a(a+1)/2
∏

16i<j6a

sj − si
j− i

.

A natural question to ask now would be: what about enumeration formulas for
domino tilings of ARa,b with unit squares removed from more than one boundary
side? We answer this question in Part ii of this thesis, where we consider the most
general case of defects (removed unit squares) on all boundary sides.

1.3 connection between asms and aztec diamonds

We can recast the problem of enumerating domino tilings into a perfect matching
problem. A perfect matching of a graph is a matching in which every vertex of the
graph is incident to exactly one edge of the matching. It is easy to see that domino
tilings of a region can be identified with perfect matchings of its planar dual graph,



6 introduction

the graph that is obtained if we identify each unit square with a vertex and unit
squares sharing an edge with each other is identified with an edge (see Figure 1.3).
So for any region R on the square lattice we denote by M(R) the number of domino
tilings of R, equivalently the number of perfect matchings of the planar dual graph
of the region R. For instance, Figure 1.4 shows an example of this equivalence for
AD(3).

(a) AD(3). (b) Planar dual graph
of AD(3).

Figure 1.3: Equivalence of tilings and matchings.

(a) Domino tiling. (b) Perfect matching.

Figure 1.4: Example of the equivalence of tilings and matchings.

If we now rotate the planar dual graph of an Aztec Diamond by 45◦, we see that
this graph is made of n rows of n diamond shaped cells. If we assign an entry 1, 0
or −1 to each such cell in the perfect matching where a cell is covered by 2, 1 or 0
edge(s) then we get a correspondence between a perfect matching and an ASM. This
is illustrated in Figure 1.5 for the matrix0 1 0

1 −1 1

0 1 0

 .

Here the heavier lines are the edges that count towards the perfect matching.
This gives us the following result which connects domino tilings of Aztec dia-

monds and enumeration of ASMs (see the work of Elkies, Kuperberg, Larson and
Propp [14, 15], as well as of Mihai Ciucu [9])

# Domino tilings of AD(n) =
∑

A∈An+1

2N−(A),
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0 1 0

1

0

−1 1

1 0

Figure 1.5: ASMs and Aztec diamonds.

where An is the set of all n×n ASMs and N−(A) is the number of −1’s in A. The
sum in the right-hand side is also called 2-enumeration of ASMs.

1.4 other related objects

There are several combinatorial objects which are intimately related to ASMs as
well as Aztec diamonds. In fact, several of these objects are counted by the same
sequence of numbers as that of ASMs: 1, 2, 7, 42, 429, . . .. We mention a few below
(the list is non-exhaustive).

1. Monotone Triangles A monotone triangle of size n is a triangular array of
integers (ai,j)16j6i6n of the form

a1,1

a2,1 a2,2

a3,1 a3,2 a3,3

. .
. . . .

an,1 · · · · · · an,n

such that all row entries are strictly increasing and each entry is weakly
between its two bottom entries.

The set of monotone triangles of size n with bottom row equal to (1, 2, . . . ,n)
is equinumerous with order n ASMs [37].

2. Descending Plane Partitions A descending plane partition is an array of positive
integers (di,j)16i6r,i6j6λi+i−1 of the form

d1,1 d1,2 d1,3 · · · d1,λ1

d2,2 d2,3 · · · d2,λ2+1
. . . . .

.

dr,r · · · dr,λr+r−1

such that

• all row entries are weakly decreasing,
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• all column entries are strictly decreasing,

• the number of entries in each row is strictly less than the first entry in the
same row and is at least as large as the first entry in the following row.

It is known that the number of descending plane partitions with entries at
most n are equinumerous with order n ASMs.

3. Totally Symmetric Self-Complementary Plane Partitions A plane partition in
an a× b× c box is a subset

PP ⊂ {1, 2, · · · ,a}× {1, 2, · · · ,b}× {1, 2, · · · , c}

with (i′, j′,k′) ∈ PP if (i, j,k) ∈ PP and (i′, j′,k′) 6 (i, j,k). If a plane partition
has all the symmetries (that is, (i, j,k) ∈ PP if and only if all six permutations
of (i, j,k) are also in PP) and is its own complement (that is, if (i, j,k) ∈ PP
then (2n+ 1− i, 2n+ 1− j, 2n+ 1− k) /∈ PP), then it is called totally symmetric
self-complementary plane partitions (TSSCPP). An example of such a TSSCPP
is given in Figure 1.6. The class of TSSCPPs inside a 2n× 2n× 2n box are

Figure 1.6: A totally symmetric self-complementary plane partition.

equinumerous with n×n ASMs.

4. Alternating Sign Triangles An alternating sign triangle (AST) of size n is a
triangular array

a1,1 a1,2 . . . a1,2n−2 a1,2n−1

a2,2 . . . a2,2n−2
...

an,n

such that

• the entries are either 1,−1 or 0,

• along the columns and rows the non-zero entries alternate,

• in each column the first non-zero entry from the top is a 1 and the
rowsums are equal to 1.
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It was shown by Ayyer, Behrend and Fischer [3] that the number of size n
ASTs is equal to order n ASMs.

Apart from a simple bijection between monotone triangles of size n with bottom
row (1, 2, . . . ,n) and order n ASMs, no explicit bijections are known between the
other objects mentioned above. One of the most outstanding open problems in
enumerative combinatorics is to find such a bijection.

1.5 structure of the thesis

The remainder of the thesis is structured as follows:

• Chapter 2 describes in brief the connection between ASMs and the six-vertex
model which we use in the subsequent chapters to deduce our results.

• Chapter 3 deals with the refined enumeration of ASMs with vertical symmetry.
In particular, one result proves a conjecture of Fischer [17].

• Chapter 4 deals with the refined enumeration of ASMs with off-diagonal
symmetry.

• Chapter 5 deals with the refined enumeration of ASMs with quarter-turn
symmetry. In particular the results prove conjectures of Robbins [38] and
Duchon [13].

• Chapter 6 explains one of the major techniques used in enumerating tilings of
regions in a finite lattice, called Kuo condensation. This chapter also presents a
generalization of the method.

• Chapter 7 deals with enumerating domino tilings of Aztec rectangles with
defects on one or two boundary sides.

• Chapter 8 presents the most general results possible for enumerating domino
tilings of Aztec rectangles with arbitrary defects on all boundaries.

• Appendix A contains a result which is used frequently in Part i, as well as
enumerates a weighted rhombus tiling problem for certain quartered hexagons.





Part I

R E F I N E D E N U M E R AT I O N O F A LT E R N AT I N G S I G N
M AT R I C E S

In this part we prove refined enumeration results on several symmetry
classes as well as related classes of alternating sign matrices with respect
to classical boundary statistics, using the six-vertex model of statistical
physics. More precisely, we study vertically symmetric, vertically and hor-
izontally symmetric, vertically and horizontally perverse, off-diagonally
and off-antidiagonally symmetric, vertically and off-diagonally symmet-
ric, quarter-turn symmetric as well as quasi quarter-turn symmetric alter-
nating sign matrices. Our results prove conjectures of Fischer, Duchon
and Robbins. This part corresponds to joint work with Ilse Fischer [21].





2
A S M S A N D T H E S I X V E RT E X M O D E L

Kuperberg’s proof of the ASM conjecture [27] was by exploiting a bijection between
ASMs and a model in statistical physics, called the six-vertex model. In this chapter,
we will explain this connection in brief.

We consider a quadratic sub-region of the square grid such that the boundary
vertices are of degree 1, see Figure 2.1. A configuration of a corresponding statistical
physics model is an orientation on the edges of this graph such that both the in-
degree and the out-degree of each degree 4 vertex is 2. If the orientations of the
edges incident with vertices of degree 1 are prescribed to be oriented inwards for
horizontal edges and outwards for vertices edges (see Figure 2.1) then we say such a
configuration satisfies the domain wall boundary condition. Such a setup is in bijection
with ASMs, and is called the six vertex model, due to the six possibilities of assigning
orientations to the edges incident with degree 4 vertices to make the in-degree and
out-degree equal to 2. An example of such a configuration in given in Figure 2.1.

If we associate with each of the degree 4 vertices in a six-vertex configuration a
number as given in Figure 2.2, then we obtain a matrix with entries in the set {±1, 0}.
It is not difficult to see that such a matrix will be an ASM, and we actually get a
bijection between ASMs and configurations of the six-vertex model. For example,
the matrix associated with the configuration in Figure 2.1 is

0 1 0 0

1 −1 1 0

0 1 0 0

0 0 0 1

 .

With such a model, there is an associated partition function (say Z): it is the sum of
the weights of all possible configurations (say w(C)) of the model. The weight of a
configuration C is the product of all the weights of degree 4 vertices (say wv for vertex
v in the graph), which will be defined now. We associate with each horizontal line in
the grid a spectral parameter xi and with each vertical line a spectral parameter yj
as marked in Figure 2.1. The label of a vertex which is intersected by lines associated
with the parameters xi and yj is xi/yj. Each of the vertices will be assigned a weight
as given in Figure 2.2, where u has to be replaced by the label and q is a global
parameter which we will specialize in the coming sections. We use the abbreviations

x = x−1 and σ(x) = x− x

throughout this thesis.
More formally, the above description says that the partition function is defined as

Z(n;~x;~y) =
∑
C∈C

w(C) =
∑
C∈C

∏
v∈C

v vertex of degree 4

wv,

13
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x1

x2

x3

x4

y1 y2 y3 y4

Figure 2.1: Six Vertex Model with Domain Wall Boundary Condition.

ASM 1 −1 0 0 0 0

six-vertex configuration

weight 1 1
σ(qu)
σ(q2)

σ(qu)
σ(q2)

σ(qū)
σ(q2)

σ(qū)
σ(q2)

Figure 2.2: Correspondence between ASMs and six-vertex configurations.

where ~x = (x1, x2, . . . , xn), ~y = (y1,y2, . . . ,yn) and C is the set of all possible
configurations of the model we are considering. It is clear now that, if all the weights
can be made equal to 1 in all configurations of the six-vertex model by specializing
~x,~y as well as q, then the partition function will just count the number of ASMs
of a given size. The choices of weights in Figure 2.2 are appropriate to make this
happen. This was essentially the approach used by Kuperberg [27] to prove the ASM
conjecture.

We note that, rotating any of these vertices would result in changing the weights
of the vertices in a way that the spectral parameters appearing in the weights
would become their inverses. This will be used in the subsequent chapters without
commentary.



3
A S M S W I T H V E RT I C A L S Y M M E T RY

This chapter deals with ASMs which are vertically symmetric; in particular we
look at ASMs with only vertical symmetry (VSASMs), ASMs with both vertical and
horizontal symmetry (VHSASMs) and a related class of matrices called vertically
and horizontally perverse ASMs (VHPASMs).

ASMs that are invariant under the reflection in the vertical symmetry axis only
exist for odd order: this follows because an ASM has a unique 1 in the top row which
then has to be situated in the central column of an ASM with vertical symmetry.
This implies in particular that the top row of a such an ASM is fixed. It is also not
hard to see that the central column of such an ASM is always (1,−1, 1,−1, . . . , 1)T .
The second row of an ASM with vertical symmetry contains precisely two 1’s, which
are symmetrically arranged left and right of the central −1. Thus, the second row of
such an ASM is determined by the position of the first 1 in the second row. The aim
of this chapter is to prove refined enumeration results for VSASMs, VHSASMs and
VHPASMs with respect to the position of the first 1 in the second row.

3.1 vertically symmetric asms

This section deals with the case of ASMs with only vertical symmetry. An example
of such an ASM is the following matrix

0 0 0 1 0 0 0

0 1 0 −1 0 1 0

1 −1 0 1 0 −1 1

0 0 1 −1 1 0 0

0 1 −1 1 −1 1 0

0 0 1 −1 1 0 0

0 0 0 1 0 0 0


.

As already mentioned such ASMs occur for odd order and were enumerated by
Kuperberg [28], who proved that the number of (2n+ 1)× (2n+ 1) VSASMs equals

1

2n

n∏
j=1

(6j− 2)!(2j− 1)!
(4j− 1)!(4j− 2)!

.

Later, Razumov and Stroganov [34] proved a refined enumeration result for VSASMs.
They proved that the number of (2n+ 1)× (2n+ 1) VSASMs with the position of
the unique 1 in the first column fixed at the i-th row is given by

1

2n−1

n−1∏
k=1

(6k− 2)!(2k− 1)!
(4k− 1)!(4k− 2)!

i−1∑
k=1

(−1)i+k−1
(2n+ k− 2)!(4n− k− 1)!
(4n− 2)!(k− 1)!(2n− k)!

.

15
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x1

x̄1

x2

x̄2

x3

x̄3

y1 y2 y3

qx1

qx2

qx3

Figure 3.1: The grid corresponding to VSASMs.

Subsequently, Fischer [17] conjectured the following formula for the number of
(2n+ 1)× (2n+ 1) VSASMs that have the first 1 in the second row in position i:

(2n+ i− 2)!(4n− i− 1)!
2n−1(4n− 2)!(i− 1)!(2n− i)!

n−1∏
j=1

(6j− 2)!(2j− 1)!
(4j− 1)!(4j− 2)!

=: AV(2n+ 1, i).

In this section, we prove this conjecture.
From the discussion in the beginning of this chapter it is clear that (2n+ 1)×

(2n+ 1) VSASMs correspond to 2n× (n+ 1) matrices with entries in {±1, 0} that
have the following properties.

1. The non-zero entries alternate in each row and column.

2. All column sums are 1 except for the last column which is always equal to
(1,−1, 1, . . . ,−1)T .

3. The first non-zero entry of each row and column is 1.

The 6× 4 matrix with these properties that corresponds to the VSASM from above is

0 0 0 1

0 1 0 −1

1 −1 0 1

0 0 1 −1

0 1 −1 1

0 0 1 −1


.

(We deleted the bottom row as well as the last n columns.)
Next we use the well-known correspondence between ASMs and the six-vertex

model as explained in Chapter 2 to translate the 2n× (n+ 1) matrices into orien-
tations of graphs as indicated in Figure 3.1. In our example we obtain Figure 3.2.
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Figure 3.2: The six-vertex configuration of our example.

U-turn

weight σ(bu) σ(bū)

Figure 3.3: Weights of the U-turns.

Note that the right boundary, i.e., the fixed column (1,−1, 1, . . . ,−1)T , is modeled
via U-turns with down-pointing orientation.

As for the related partition function ZU(n; x1, . . . , xn;y1, . . . ,yn), we allow for the
moment both up-pointing and down-pointing U-turns, and the labels and weights
are as indicated in Figures 3.1 and 3.3, involving now an additional global parameter
b. Later we will specialize b so that the weight of a configuration that has at least
one up-pointing U-turn other than the top U-turn is 0. Osamu Tsuchiya [42] was the
first who derived a formula for this partition function. Here we use Kuperberg’s [28,
Theorem 10] version (up to some normalization factor).

Theorem 3.1. The U-turn partition function of order n is

ZU(n; x1, . . . , xn;y1, . . . ,yn)

=
σ(q2)n−2n

2∏n
i=1 σ(bȳi)σ(q

2x2i )
∏n
i,j=1 α(xiȳj)α(xiyj)∏

16i<j6n σ(x̄ixj)σ(yiȳj)
∏
16i6j6n σ(x̄ix̄j)σ(yiyj)

× det
16i,j6n

(
1

α(xiȳj)
−

1

α(xiyj)

)
,

where α(x) = σ(qx)σ(qx̄).

In the following, we will specialize

(x1, . . . , xn) = (x, 1, . . . , 1) and (y1, . . . ,yn) = (1, . . . , 1),

as well as
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b = q and q+ q̄ = 1, (3.1)

in the partition function. Next we explore how this specialization can be expressed
in terms of the numbers AV(2n+ 1, i).

First of all, we note that b = q and xi = 1 for i > 1 implies that the configurations
that have at least one up-pointing U-turn in positions 2, 3, . . . ,n have weight 0
and can therefore be omitted. For the remaining configurations we can distinguish
between the cases where the topmost U-turn is down-pointing (Case 1) or not
(Case 2).

Case 1. If the topmost U-turn is down-pointing, then the top row is forced
and all vertex configurations are of type . In the second row, there is precisely

one configuration of type , say in position i counted from the left, and the

configurations right of it are all of type , while the configurations left of it are of

type . Such configurations correspond to (2n+ 1)× (2n+ 1) VSASMs that have
the first 1 in the second row in the i-th column. The top U-turn contributes σ(q2x),
while all other n− 1 U-turns contribute σ(q2). In total such a configuration has the
following weight (

σ(qx)

σ(q2)

)2n−i(
σ(qx̄)

σ(q2)

)i−1
σ(q2x)σ(q2)n−1.

This case contributes the following term towards the partition function

n∑
i=1

AV(2n+ 1, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)2n(
σ(qx̄)

σ(q2)

)−1

σ(q2x)σ(q2)n−1.

Case 2. If the topmost U-turn is up-pointing, there is a unique occurrence of

in the top row, say in position i. There is either one occurrence of in the second
row, say in position j with 1 6 j < i, or no such occurrence.

In the first case, the weight is(
σ(qx)

σ(q2)

)2i−j−2(
σ(qx̄)

σ(q2)

)2n−2i+j−1
σ(x̄)σ(q2)n−1.

We notice that for fixed i, these configurations give rise to all the configurations
counted by AV(2n+ 1, j). So, this case contributes the following term towards the
partition function

n∑
j=1

AV(2n+ 1, j)
(
σ(qx̄)

σ(qx)

)j n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)2n−2i−2
σ(x̄)σ(q2)n−1.

In the second case the weight is(
σ(qx)

σ(q2)

)i(
σ(qx̄)

σ(q2)

)2n−i−1
σ(x̄)σ(q2)n−1.
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We notice that such configurations are essentially the same as the ones counted by
AV(2n+ 1, i) with just the first U-turn reversed, so this contributes the following
term towards the partition function

n∑
i=1

AV(2n+ 1, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)2n−1
σ(x̄)σ(q2)n−1.

From this it follows that

ZU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

n∑
i=1

AV(2n+ 1, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)2n−1
σ(x̄)σ(q2)n−1

+

n∑
i=1

AV(2n+ 1, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)2n(
σ(qx̄)

σ(q2)

)−1

σ(q2x)σ(q2)n−1

+

n∑
j=1

AV(2n+ 1, j)
(
σ(qx̄)

σ(qx)

)j n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)2n−2i−2
× σ(x̄)σ(q2)n−1, (3.2)

provided equation (3.1) is fulfilled.
In the end, we want to perform the following transformation of variable

z =
σ(qx̄)

σ(qx)

and eliminate x. A tedious but straight forward computation shows that

− σ(q2)nσ(qx̄)−2n
1+ z

1− 2z
ZU(n; x, 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

n∑
i=1

AV(2n+ 1, i)
(
zi−2n−1 + z−i

)
. (3.3)

We define

W−(α1, . . . ,αn; x1, . . . , xn) = det
16i,j6n

(
x
αj
i − x

−αj
i

)
and

Sp2n(λ1, . . . , λn; x1, . . . , xn) =
W−(λ1 +n, λ2 +n− 1, . . . , λn + 1; x1, . . . , xn)

W−(n,n− 1, . . . , 1; x1, . . . , xn)
.

Then Sp2n(λ1, . . . , λn; x1, . . . , xn) is the character of the irreducible representation
of the symplectic group Sp2n(C) corresponding to the partition (λ1, . . . , λn). Okada
[31, Theorem 2.4] showed that

σ(q)−2n
2+2nσ(q2)2n

2−n

n∏
i=1

σ(bȳi)σ(q
2x2i )

ZU(n; x1, . . . , xn;y1, . . . ,yn)

= 3−n(n−1)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n),
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provided q+ q̄ = 1. From this, we get the following for our special case

ZU(n; x, 1, . . . , 1; 1, . . . , 1) = σ(q2x2)σ(q2)n−13−n(n−1)

× Sp4n(n− 1,n− 1, . . . , 0, 0; x2, 1, . . . , 1).

Combining this with equation (3.3), we obtain

−
σ(q2)2n−1

σ(qx̄)2n
(1+ z)

(1− 2z)
σ(q2x2)3−n(n−1)Sp4n(n− 1,n− 1, . . . , 0, 0; x2, 1, . . . , 1)

=

n∑
i=1

AV(2n+ 1, i)
(
zi−2n−1 + z−i

)
. (3.4)

On the other hand, Okada [31, Theorem 2.5] also showed that the partition function
for off-diagonally symmetric ASMs (ASMs which are diagonally symmetric with a
null diagonal) satisfy

σ(q)−2n
2+2nσ(q2)2n

2−2nZO(n; x1, . . . , x2n)

= 3−n(n−1)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x22n),

provided q + q̄ = 1, and where ZO(n; x1, . . . , x2n) is the partition function for
off-diagonally symmetric ASMs (OSASMs), which was explicitly calculated by
Kuperberg [28, Theorem 10] (up to some normalization factor) as

ZO(n; x1, x2, . . . , x2n) =
σ(q2)2n−2n

2∏2n
i,j=1 α(xixj)∏2n

i,j=1 σ(x̄ixj)
Pf16i,j62n

(
σ(x̄ixj)

α(xixj)

)
(3.5)

for general q and used by Okada to obtain the specialization. Here the Pfaffian of a
triangular array (ai,j)16i<j62n is defined as

Pf16i,j62n(ai,j) =
∑

π={(i1 ,j1),...,(in ,jn)}
π a perfect matching ofK2n ,ik<jk

sgnπ
n∏
k=1

aik,jk ,

where sgnπ is the sign of the permutation i1j1 . . . injn.
Thus, it follows that

3−n(n−1)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1) = ZO(n; x, 1, . . . , 1),

(3.6)

provided q+ q̄ = 1 holds. From the work of Razumov and Stroganov [33, Equation
(24)], we know that

ZO(n; x, 1, . . . , 1) =
2n∑
i=2

AO(2n, i)z−i+2σ(qx̄)2n−2σ(q2)−2n+2, (3.7)
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where AO(2n, i) is the number of 2n× 2n off-diagonally symmetric ASMs with the
unique 1 in the first row in the i-th position, and for i > 2 these numbers are given
by

AO(2n, i) =
1

2n−1

n−1∏
k=1

(6k− 2)!(2k− 1)!
(4k− 1)!(4k− 2)!

×
i−1∑
k=1

(−1)i+k−1
(2n+ k− 2)!(4n− k− 1)!
(4n− 2)!(k− 1)!(2n− k)!

, (3.8)

whereas they are 0 when i < 2. Using equations (3.6) and (3.7), we obtain

Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

= 3n(n−1)
(
σ(qx̄)

σ(q2)

)2n−2 2n∑
i=2

AO(2n, i)z−i+2. (3.9)

Combining this with equation (3.4), we obtain

− σ(q2)σ(qx̄)−2
1+ z

1− 2z
σ(q2x2)

2n∑
i=2

AO(2n, i)z−i+2

=

n∑
i=1

AV(2n+ 1, i)
(
zi−2n−1 + z−i

)
.

Assuming q+ q̄ = 1, we have −
σ(q2)σ(q2x2)

σ(qx̄)2
=
1− 2z

z2
, so the above becomes

2n∑
i=2

AO(2n, i)
(
z−i + z−i+1

)
=

n∑
i=1

AV(2n+ 1, i)
(
zi−2n−1 + z−i

)
. (3.10)

Now, we compare the coefficients of z−i for 1 6 i 6 n from equation (3.10) to
conclude

AV(2n+ 1, i) = AO(2n, i) + AO(2n, i+ 1). (3.11)

Combining equations (3.11) and (3.8), we get the following theorem, which proves
Fischer’s conjecture.

Theorem 3.2. The number of (2n+ 1)× (2n+ 1) VSASMs with the first 1 in its second
row at position i is given by

(2n+ i− 2)!(4n− i− 1)!
2n−1(4n− 2)!(i− 1)!(2n− i)!

n−1∏
k=1

(6k− 2)!(2k− 1)!
(4k− 1)!(4k− 2)!

.

Remark 1. We notice that the refined enumeration numbers for VSASMs with respect to
the position of the unique 1 in the first column coincides with the refined enumeration of
OSASMs. This also gives us the following relation between the different refined enumeration
numbers for VSASMs

AV(2n+ 1, i) = AVC(2n+ 1, i) + AVC(2n+ 1, i+ 1),

where AVC(2n+ 1, i) is the number of (2n+ 1)× (2n+ 1) VSASMs with the position of
the unique 1 in the first column in position i.
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3.2 vertically and horizontally symmetric asms

ASMs that are invariant under the reflection in the vertical symmetry axis as well as
the horizontal symmetry axis also exist only for odd order. In this section we focus
on such matrices. The enumeration formulas for VHSASMs were proved by Okada
[31], who showed that the number of (4n+ 1)× (4n+ 1) VHSASMs is

n−1∏
i=0

(3i+ 2)!(3n+ 3i)!
(2n+ i)!(3n+ i)!

and the number of (4n+ 3)× (4n+ 3) VHSASMs is

n∏
i=0

(3i− 1)!(3n+ 3i)!
(2n+ i)!(3n+ i+ 1)!

.

No refined enumeration formulas for VHSASMs have been conjectured or proven so
far in the literature.

Due to a slight difference between how the matrices are enumerated for order
4n+ 3 and order 4n+ 1, we deal with the refined enumeration of both the cases
in separate subsections below. We assume n > 1, unless otherwise mentioned. The
only VHSASM of order 1 is the single entry matrix (1) and for order 3, the following
matrix 0 1 0

1 −1 1

0 1 0

 .

3.2.1 VHSASMs of order 4n+ 3

First, we consider the case for VHSASMs of order 4n+ 3. It is clear that VHSASMs
also have two 1’s in its second row, and the second row is determined by the position
of the first 1 in this row. The middle row of a VHSASMs is (1,−1, 1, . . . ,−1, 1) by
the horizontal symmetry. The aim of this subsection is to give a generating function
result for the refined enumeration of order 4n+ 3 VHSASMs with respect to the
position of the first 1 in the second row.
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An example of such a VHSASM of order 15 is

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0

0 0 1 −1 0 0 0 1 0 0 0 −1 1 0 0

0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 −1 0 0 1 0 −1 0 1 0 0 −1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 −1 0 0 1 0 −1 0 1 0 0 −1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0

0 0 1 −1 0 0 0 1 0 0 0 −1 1 0 0

0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0



.

From the preceding paragraph, it is clear that (4n+ 3)× (4n+ 3) VHSASMs corre-
spond to (2n+ 1)× (2n+ 1) matrices with entries in {±1, 0} that have the following
properties.

1. The non-zero entries alternate in each row and column.

2. The topmost non-zero entry of each column is 1, except the last column which
is always (−1, 1, . . . , 1,−1)T .

3. The first non-zero entry of each row is 1, except for the last row which is
always (−1, 1, . . . , 1,−1).

The 7× 7 matrix with these properties that corresponds to the above VHSASM is

0 0 1 0 0 0 −1

0 1 −1 0 0 0 1

0 0 1 0 0 0 −1

0 0 0 0 0 0 1

1 −1 0 0 1 0 −1

0 0 0 0 0 0 1

−1 1 −1 1 −1 1 −1


.

(We deleted the last (2n+ 1) columns and rows as well as the first row and first
column.)

Such a matrix has a unique 1 in its first row and let AVH(4n+ 3, i+ 1) be the
number of such matrices that have this unique 1 in column i (the index i runs from
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1 to 2n, because the last position has a fixed −1). Note that AVH(4n+ 3, i) is now
equal to the number of VHSASMs of order 4n+ 3 where the first 1 in the second
row is in position i. Due to the horizontal symmetry AVH(2n+ 1, 1) = 0 for all n.
Now, if we delete the top two rows from the (2n+ 1)× (2n+ 1) matrix we obtain a
(2n− 1)× (2n+ 1) matrix with properties 1. and 3., but property 2. replaced by the
following,

2’. The topmost non-zero entry of each column is 1, except for the last column
which is always (−1, 1, . . . , 1,−1)T , and one other column whose topmost
non-zero entry is −1 (if a non-zero entry exists at all in this column).

In our example, we obtain

0 0 1 0 0 0 −1

0 0 0 0 0 0 1

1 −1 0 0 1 0 −1

0 0 0 0 0 0 1

−1 1 −1 1 −1 1 −1


.

We let BVH(4n+ 3, j) denote the number of such (2n− 1)× (2n+ 1) matrices with
the special column in 2’. being column j. When passing from the (2n+ 1)× (2n+ 1)

matrix to the (2n− 1)× (2n+ 1) matrix, the column j is the position of the first 1 in
the second row of the (2n+ 1)× (2n+ 1) matrix if the second row contains two 1’s
and otherwise it is the position of the unique 1 in the top row. We can deduce the
following simple relation between AVH(4n+ 3, i) and BVH(4n+ 3, j):

AVH(4n+ 3, i+ 1) =
i∑
j=1

BVH(4n+ 3, j)

⇔ BVH(4n+ 3, i) = AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i). (3.12)

Hence, in order to compute AVH(4n+ 3, i), it suffices to compute BVH(4n+ 3, i).
Next we use the correspondence between ASMs and the six-vertex model as

explained in Chapter 2 to translate the (2n+ 1)× (2n+ 1) matrices into directed
graphs (see Figure 3.4). In our example we obtain Figure 3.5. We note that the right
boundary, i.e., the fixed column (−1, 1, . . . ,−1)T , is modeled via U-turns with up-
pointing orientation and the bottom boundary, i.e., the fixed row (−1, 1,−1, . . . ,−1)
is modeled via right pointing U-turns. For the partition function

ZUU(n; x1, . . . , xn;y1, . . . ,yn),

we allow both up-pointing and down-pointing U-turns for the right boundary as
well as both right-pointing and left-pointing U-turns for the bottom boundary, and
the weights are as indicated in Figure 3.6, involving now another global parameter c.

We shall use the following formula for this partition function that was derived by
Kuperberg [28, Theorem 10] (up to some normalization factor).
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x1

x̄1

x2

x̄2

x3

x̄3

y1 ȳ1 ȳ2y2 y3 ȳ3

qx1

qx2

qx3

qȳ3qȳ2qȳ1

Figure 3.4: The grid corresponding to VHSASMs.

Figure 3.5: The six-vertex configuration of our example.

U-turn

weight σ(bu) σ(bū) σ(cū) σ(cu)

Figure 3.6: Weights of the U-turns.
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Theorem 3.3. The UU-turn partition function of order n is

ZUU(n; x1, . . . , xn;y1, . . . ,yn)

=
σ(q2)n−4n

2∏n
i=1 σ(q

2ȳ2i )σ(q
2x2i )

∏n
i,j=1 α(xiyj)

2α(xiȳj)
2∏

16i<j6n σ(x̄ixj)
2σ(yiȳj)2

∏
16i6j6n σ(x̄ix̄j)

2σ(yiyj)2

× det
16i,j6n

(MU) det
16i,j6n

(MUU),

where α(x) = σ(qx)σ(qx̄),

(MU)i,j =

(
1

α(xiȳj)
−

1

α(xiyj)

)
,

and

(MUU)i,j =

(
σ(bȳj)σ(cxi)

σ(qxiȳj)
−
σ(bȳj)σ(cx̄i)

σ(qx̄iȳj)
−
σ(byj)σ(cxi)

σ(qxiyj)
+
σ(byj)σ(cx̄i)

σ(qx̄iyj)

)
,

and all determinants are of order n.

In the following, we will specialize

(x1, . . . , xn) = (x, 1, . . . , 1) and (y1, . . . ,yn) = (1, . . . , 1),

as well as

b = q̄, c = q̄ and q+ q̄ = 1, (3.13)

in the partition function. First of all, we note that b = q̄ and xi = 1 for i > 1

implies that the configurations that have at least one down-pointing U-turn in
positions 2, 3, . . . ,n have weight 0 and can therefore be omitted. For the remaining
configurations we can distinguish between the cases where the topmost U-turn is
down-pointing (Case 1) or not (Case 2). Also c = q̄ means that configurations which
have at least one left pointing U-turns in the bottom boundary have weight 0, and
so they are omitted.

Case 1. If the topmost U-turn is down-pointing, then the top row is forced
and all vertex configurations are of type . In the second row, there is precisely

one configuration of type , say in position i counted from the left, and the

configurations right of it are all of type , while the configurations left of it are of

type . The top U-turn contributes σ(x), while all other 2n− 1 U-turns contribute
σ(q̄2). In total such a configuration has the following weight(

σ(qx)

σ(q2)

)4n−i(
σ(qx̄)

σ(q2)

)i−1
σ(x)σ(q̄2)2n−1.

Case 2. In this case, there is a unique occurrence of in the top row, say in

position i. There is either one occurrence of in the second row, say in position j
with 1 6 j < i, or no such occurrence. In the first case, the weight is(

σ(qx)

σ(q2)

)2i−j−2(
σ(qx̄)

σ(q2)

)4n−2i+j−1
σ(q̄2x̄)σ(q̄2)2n−1,
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while in the second case the weight is(
σ(qx)

σ(q2)

)i(
σ(qx̄)

σ(q2)

)4n−i−1
σ(q̄2x̄)σ(q̄2)2n−1.

From this, it follows that

ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

BVH(4n+ 3, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)4n−1
σ(q̄2x̄)σ(q̄2)2n−1

+

2n∑
i=1

BVH(4n+ 3, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)4n(
σ(qx̄)

σ(q2)

)−1

σ(x)σ(q̄2)2n−1

+

2n∑
j=1

BVH(4n+ 3, j)
(
σ(qx̄)

σ(qx)

)j 2n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)4n−2i−2
× σ(q̄2x̄)σ(q̄2)2n−1. (3.14)

From here, substituting z =
σ(qx̄)

σ(qx)
, we shall arrive at

− σ(q2)2nσ(qx̄)−4n
1− z2

1− 2z
ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

BVH(4n+ 3, i)
(
zi−4n−1 − z−i+1

)
. (3.15)

Okada [31, Theorem 2.4] showed that
n∏
i=1

σ(q2ȳ2i )
−1σ(q2x2i )

−1ZUU(n; x1, . . . , xn;y1, . . . ,yn)

= 3−2n
2+nSp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n)

× Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n, 1),

provided (3.13) is satisfied. From this, we get the following for our special case

ZUU(n; x, 1, . . . , 1; 1, . . . , 1) = σ(q2)2n−1σ(q2x2)3−2n
2+n

× Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

× Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1). (3.16)

Combining equations (3.15) and (3.16), we get

− 3−2n
2+nσ(q2x2)σ(q2)4n−1σ(qx̄)−4n

1− z2

1− 2z

× Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

× Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

=

2n∑
i=1

BVH(4n+ 3, i)
(
zi−4n−1 − z−i+1

)
. (3.17)
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From equation (A.5) in Appendix A, we have

Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1) =
∑

16j6i6n+1

Qn,ix
2i−4j+2,

(3.18)

where

Qn,i =
3n(n−1)

2n−1(4n− 1)!

n−1∏
j=0

(4j+ 3)(6j+ 6)!
(2n+ 2j+ 1)!

n∑
j=0

[
27j(3j− 2n− i+ 2)4n−3(3n− 3j+ 1)

(3j)!(n− j)!(3j+ 1)3n

×
((
n− j+ 4

3

)
2j
(2n+ 3j− i− 1)2

(3n+ 3j+ 1)2
−

(
n− j+ 2

3

)
2j
(−2n+ 3j− i)2

(3n− 3j+ 1)2

)]
(3.19)

with (a)n = a(a+ 1) · · · (a+n− 1). The purpose of Appendix A is also to provide
a combinatorial interpretation of Qn,i in terms of rhombus tilings.

Using equations (3.9), (3.17), (3.18) as well as q+ q̄ = 1 and

BVH(4n+ 3, i) = AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i)

with some simplifications, we now arrive at the following equation

3−n
2

(z2 − z+ 1)n(1− z2)

(
2n∑
i=2

AO(2n, i)z−i
) ∑

16j6i6n+1

Qn,ix
2i−4j+2


=

2n+1∑
i=1

(AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i))
(
zi−2n−1 − z−i+2n+1

)
. (3.20)

Replacing x2 =
zq− 1

q− z
, using q+ q̄ = 1 we get

3−n
2

(1− z2)

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16j6i6n+1

Qn,i(zq− 1)
n+i−2j+1(q− z)n−i+2j−1(−q)−n


=

2n+1∑
i=1

(AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i))
(
zi−2n−1 − z−i+2n+1

)
.

Thus, we have proved the following result.
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Theorem 3.4. Let AVH(4n+ 3, i) denote the number of VHSASMs of order 4n+ 3, with
the first occurrence of a 1 in the second row be in the i-th column. Then, for all n > 1 the
following is satisfied

3−n
2

(1− z2)

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16j6i6n+1

Qn,i(zq− 1)
n+i−2j+1(q− z)n−i+2j−1(−q)−n


=

2n+1∑
i=1

(AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i))
(
zi−2n−1 − z−i+2n+1

)
,

where every quantity appearing on the left-hand side is explicitly known, and AVH(4n+

3, 1) = 0 for all n.

Remark 2. We can write equation (3.17) differently by using results of Ayyer and Behrend
[2] as

− 3−2n
2−3n−2(z− 1− z2)2n+1(1− z2)

× s(2n+ 1, 2n, 2n, . . . , 1, 1, 0, 0; x2, x̄2, 1, . . . , 1)

=

2n∑
i=1

BVH(4n+ 3, i)
(
zi−1 − z4n−i+1

)
.

where

s(λ1, . . . , λn; x1, . . . , xn) =
V(λ1 +n− 1, λ2 +n− 2, . . . , λn; x1, . . . , xn)

V(n− 1,n− 2 . . . , 1, 0; x1, . . . , xn)

is the character of the irreducible representation of the general linear group GLn(C) corre-
sponding to the partition (λ1, . . . , λn) (i.e., a Schur function) and

V(α1, . . . ,αn; x1, . . . , xn) = det
16i,j6n

(
x
αj
i

)
.

To see that this is true, we first use equation (7), then Proposition 5, followed by equation (8)
and finally Corollary 11, equation (55) from the work of Ayyer and Behrend [2].

From this and using the relation (3.12), we shall arrive at

− 3−2n
2−3n−1(z− 1− z2)2n+1(1− z2)

× s(2n+ 1, 2n, 2n, . . . , 1, 1, 0, 0; x2, x̄2, 1, . . . , 1)

=

2n∑
i=1

(AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i))
(
zi+1 − z4n−i+3

)
. (3.21)
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3.2.2 VHSASMs of order 4n+ 1

We now focus on the VHSASMs of order 4n+ 1. An example of such a matrix of
order 9 is 

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 1 0

1 −1 1 −1 1 −1 1 −1 1

0 1 0 0 −1 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0



.

The observations on the two top rows of order 4n+ 3 VHSASMs follow in this
case as well. The aim of this subsection is to give a generating function result for
the refined enumeration of order 4n+ 1 VHSASMs with respect to the first 1 in the
second row. However, we need to modify our arguments for this case, as the six
vertex configurations of VHSASMs of order 4n+ 1 are slightly different than the
one for order 4n+ 3.

It is clear that any order 4n+ 1 VHSASM corresponds to a (2n+ 1)× (2n+ 1)

matrix with the following properties.

1. The non-zero entries alternate in each row and column.

2. The topmost non-zero entry of each column is 1; the last column is equal to
(1,−1, 1, . . . ,−1)T .

3. The first non-zero entry of each row is 1; the last row is equal to (1,−1, 1, . . . ,−1).

The 5× 5 matrix with these properties that corresponds to the VHSASM from above
is 

0 0 0 0 1

0 0 0 1 −1

0 0 0 0 1

0 1 0 0 −1

1 −1 1 −1 1


.

(We deleted the last 2n columns and rows.)
Let us denote the number of order 4n+ 1 VHSASMs with the first occurrence of

a 1 in its second row being placed in the i-th column to be AVH(4n+ 1, i). That is,
AVH(4n+ 1, i) counts the number of (2n+ 1)× (2n+ 1) matrices described above
where the unique 1 in its second row is situated in the i-th column. Throughout
the remainder of this section, we consider n > 1. It is easy to see that for n = 1,
AVH(5, 1) = 0 and AVH(5, 2) = 1.

We shall use the correspondence between ASMs and the six-vertex model as in
the previous section. The grid for order 4n+ 1 VHSASMs is the same as in Figure
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3.4. However, for order 4n+ 1 VHSASMs the U-turns in the right boundary are
now down-pointing, as opposed to the up-pointing ones for order 4n+ 3 VHSASMs
and the U-turns on the bottom are now left-pointing, as opposed to the right-
pointing ones for order 4n+ 3 VHSASMs (see Figure 3.5). This is because we do
not delete the first row and the first column here. Again, for the partition function
ZUU(n; x1, . . . , xn;y1, . . . ,yn), we allow both up-pointing and down-pointing U-
turns for the right boundary as well as both right-pointing and left-pointing U-turns
for the bottom boundary, and the weights are as indicated in Figure 3.6. The partition
function is still the one given in Theorem 3.3.

In the following, we will specialize

(x1, . . . , xn) = (x, 1, . . . , 1) and (y1, . . . ,yn) = (1, . . . , 1),

as well as

b = q, c = q and q+ q̄ = 1, (3.22)

in the partition function. This will give us two cases similar to the cases described
in the previous section on VSASMs. Analogous to equation (3.2) we shall get the
following

ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

AVH(4n+ 1, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)4n−1
σ(x̄)σ(q2)2n−1

+

2n∑
i=1

AVH(4n+ 1, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)4n(
σ(qx̄)

σ(q2)

)−1

σ(q2x)σ(q2)2n−1

+

2n∑
j=1

AVH(4n+ 1, j)
(
σ(qx̄)

σ(qx)

)j 2n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)4n−2i−2
× σ(x̄)σ(q2)2n−1, (3.23)

provided (3.22) is satisfied.
Like earlier, we want to perform the following transformation of variable

z =
σ(qx̄)

σ(qx)

and eliminate x. After a straightforward calculation, analogous to how we obtained
equation (3.3), we shall get the following

− σ(q2)2nσ(qx̄)−4n
1+ z

1− 2z
ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

AVH(4n+ 1, i)
(
zi−4n−1 + z−i

)
. (3.24)
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We define

W+(α1, . . . ,αn; x1, . . . , xn) = det
16i,j6n

(
x
αj
i + x

−αj
i

)
and

O2n(λ1, . . . , λn; x1, . . . , xn) =
2W+(λ1 +n− 1, λ2 +n− 2, . . . , λn; x1, . . . , xn)

W+(n− 1,n− 2 . . . , 0; x1, . . . , xn)
.

Then O2n(λ1, . . . , λn; x1, . . . , xn) is the character of the irreducible representation of
the double cover of the even orthogonal group O2n corresponding to the partition
(λ1, . . . , λn), if λn 6= 0. It suffices for our purposes to have only the case for λn 6= 0.
Okada [31, Theorem 2.4] showed that

n∏
i=1

(xi + x̄i)(yi + ȳi)

n∏
i=1

σ(q2ȳ2i )
−1σ(q2x2i )

−1ZUU(n; x1, . . . , xn;y1, . . . ,yn)

= 3−2n
2+nSp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n)

×O4n
(
n+

1

2
,n−

1

2
,n−

1

2
,n−

3

2
,n−

3

2
, . . . ,

3

2
,
3

2
,
1

2
; x21, . . . , x2n,y21, . . . ,y2n

)
,

provided (3.22) is satisfied.
The above for our special values gives us

22n−1(x+ x̄)σ(q2)−2n+1σ(q2x2)−1ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

= 3−2n
2+nSp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

×O4n
(
n+

1

2
,n−

1

2
,n−

1

2
,n−

3

2
,n−

3

2
, . . . ,

3

2
,
3

2
,
1

2
; x2, 1, . . . , 1

)
. (3.25)

Now, by using a formula of Ayyer and Behrend [2, Proposition 5, then use equation
(7)] we can rewrite equation (3.25) as follows.

ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

) = 3−2n
2+3n−2σ(q2)2n−1σ(q2x2)

× (x2 + 1+ x̄2)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1)

× Sp4n−2(n− 1,n− 2,n− 2, . . . , 1, 0; x2, 1, . . . , 1) (3.26)

From equations (3.9), (3.18), (3.24) and (3.26), after some simplifications we shall
get the following equation:

(−1)n+13−n
2+2n−1(1+ z)(z− 1− z2)n−1

×
(
2n∑
i=2

AO(2n, i)z−i
) ∑

16i6j6n

Qn−1,ix
2i−4j+2


=

2n∑
i=1

AVH(4n+ 1, i)(zi−2n−2 + z2n−1−i),

where Qn,i is given by (3.19). From the above, using x2 =
zq− 1

q− z
we shall arrive at

the following result.
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Theorem 3.5. Let AVH(4n+ 1, i) denote the number of VHSASMs of order 4n+ 1, with
the first occurrence of a 1 in the second row be in the i-th column. Then, for all n > 1 the
following is satisfied

3−n
2+2n−1(1+ z)

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16i6j6n

Qn−1,i(zq− 1)
n+i−2j(q− z)n−i+2j−2(−q)−n+1


=

2n∑
i=1

AVH(4n+ 1, i)(zi−2n−2 + z2n−1−i),

where every quantity appearing in the left-hand side is explicitly known.

Remark 3. We can write equation (3.25) differently by using a result of Ayyer and Behrend
[2, Equation (8) and then use Corollary 11, equation (54)] as

ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

) = (−1)n
2

3−2n
2−nσ(q2)2n−1σ(q2x2)(z2+1−z)z−1

× s(2n, 2n− 1, 2n− 1, . . . , 1, 1, 0, 0; x2, x̄2, 1, . . . , 1).

From this and using equation (3.24), we shall arrive that

(−1)n
2

3−2n
2−n(z− 1− z2)2n(1+ z)

× s(2n, 2n− 1, 2n− 1, . . . , 1, 1, 0, 0; x2, x̄2, . . . , 1)

=

2n∑
i=1

AVH(4n+ 1, i)
(
zi + z4n+1−i

)
. (3.27)

3.3 vertically and horizontally perverse asms

A (4n+ 1)× (4n+ 3) matrix is called a vertically and horizontally perverse ASM
(VHPASM) if it satisfies the alternating sign conditions and has the same symmetries
as a VHSASM, except the central entry (?) which has opposite signs when read
horizontally and vertically. An example of such a VHPASM of dimension 9× 11 is

0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 −1 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0

0 1 −1 1 0 −1 0 1 −1 1 0

1 −1 1 −1 1 ? 1 −1 1 −1 1

0 1 −1 1 0 −1 0 1 −1 1 0

0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 −1 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0



.
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This class was first considered by Kuperberg [28], and then enumerated by Okada
[31].

A VHPASM with the dimensions stated above is said to be of order 4n+ 2. It is
clear that we can ask for the refined enumerations of VHPASMs with respect to
the position of the first occurrence of a 1 in the second column as well as in the
second row. These numbers are different due to the different lengths of the rows
and columns. Let us denote by AC

VHP(4n+ 2, i) (resp. AR
VHP(4n+ 2, i)) the number of

order 4n+ 2 VHPASMs with the first occurrence of a 1 in the second column (resp.
row) at the i-th row (resp. i-th column). In this section, we give enumeration results
for these numbers. Since, the technique is similar to the one used in Sections 3.1 and
3.2, for the sake of brevity we omit certain easily verifiable details. We also assume
n > 1 unless otherwise mentioned. For n = 0, there are no VHPASMs because of
the restriction imposed by the special entry ?.

It is clear that VHPASMs of order 4n+ 2 correspond to (2n+ 1)× (2n+ 1) matrices
with entries in {±1, 0, ?} that have the following properties.

1. The non-zero entries alternate in each row and column.

2. The topmost non-zero entry of each column is 1; the last column is equal to
(1,−1, . . . ,−1, ?)T .

3. The first non-zero entry of each row is 1; the last row is equal to (−1, 1, . . . , 1, ?).

The 5× 5 matrix with these properties that corresponds to the VHPASM from above
is 

0 0 0 0 1

0 1 0 0 −1

0 0 0 0 1

1 −1 1 0 −1

−1 1 −1 1 ?


.

(We deleted the first column, the last 2n+ 1 columns as well as the bottom 2n rows.)
We again use the correspondence between ASMs and the six-vertex model. The

grid for order 4n+ 2 VHPASMs is the same as in Figure 3.4 (we ignore the special
entry ? to get the grid). However, for order 4n+ 2 VHPASMs the U-turns in the
right boundary are now down-pointing and the U-turns on the bottom boundary
are right-pointing. Again, for the partition function ZUU(n; x1, . . . , xn;y1, . . . ,yn),
we allow both up-pointing and down-pointing U-turns for the right boundary as
well as both right-pointing and left-pointing U-turns for the bottom boundary, and
the weights are as indicated in Figures 2.2 and 3.6. The partition function is still the
one given in Theorem 3.3.

In the following, we will specialize

(x1, . . . , xn) = (x, 1, . . . , 1) and (y1, . . . ,yn) = (1, . . . , 1),

as well as

b = q, c = q̄ and q+ q̄ = 1, (3.28)
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for refined enumeration with respect to rows and

b = q̄, c = q and q+ q̄ = 1, (3.29)

for refined enumeration with respect to columns, in the partition function. This will
give us two cases similar to the cases described in the previous sections. Analogous
to equations (3.2) and (3.14), we shall get the following sets of equations.

(−1)nZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

AR
VHP(4n+2, i+1)

(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)4n(
σ(qx̄)

σ(q2)

)−1

σ(q2x)σ(q2)2n−1

+

2n∑
i=1

AR
VHP(4n+ 2, i+ 1)

(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)4n−1
σ(x̄)σ(q2)2n−1

+

2n∑
j=1

AR
VHP(4n+ 2, j+ 1)

(
σ(qx̄)

σ(qx)

)j 2n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)4n−2i−2
× σ(x̄)σ(q2)2n−1. (3.30)

provided (3.28) holds, and

(−1)nZUU(n; x, 1, . . . , 1︸ ︷︷ ︸
n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

BVHP(4n+ 2, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)4n(
σ(qx̄)

σ(q2)

)−1

σ(x)σ(q̄2)2n−1

+

2n∑
i=1

BVHP(4n+ 2, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)4n−1
σ(q̄2x̄)σ(q̄2)2n−1

+

2n∑
j=1

BVHP(4n+ 2, j)
(
σ(qx̄)

σ(qx)

)j 2n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)4n−2i−2
× σ(q̄2x̄)σ(q̄2)2n−1, (3.31)

provided (3.29) holds and where

BVHP(n, i) = AC
VHP(n, i) − AC

VHP(n, i− 1).

From here, substituting z =
σ(qx̄)

σ(qx)
, equation (3.30) gives us

(−1)nσ(q2)2nσ(qx̄)−4n
1+ z

2z− 1
ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

AR
VHP(4n+ 2, i+ 1)

(
zi−4n−1 + z−i

)
. (3.32)
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provided (3.28) holds, and equation (3.31) gives us

(−1)nσ(q2)2nσ(qx̄)−4n
1− z2

2z− 1
ZUU(n; x, 1, . . . , 1︸ ︷︷ ︸

n−1

; 1, . . . , 1︸ ︷︷ ︸
n

)

=

2n∑
i=1

BVHP(4n+ 2, i)
(
zi−4n−1 − z−i+1

)
, (3.33)

provided (3.29) holds.
Okada [31, Theorem 2.4] showed that, if (3.28) holds, then

(−1)n
n∏
i=1

σ(q2ȳ2i )
−1σ(q2x2i )

−1(y2i +1+y
−2
i )−1ZUU(n; x1, . . . , xn;y1, . . . ,yn)

= 3−2n
2+n

(
Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n)

)2
,

(3.34)

and if (3.29) holds then

(−1)n
n∏
i=1

σ(q2ȳ2i )
−1σ(q2x2i )

−1(x2i + 1+ x
−2
i )−1ZUU(n; x1, . . . , xn;y1, . . . ,yn)

= 3−2n
2+n

(
Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x2n,y21, . . . ,y2n)

)2
,

(3.35)

Using equations (3.9), (3.32), (3.33), (3.34) and (3.35), after some simplification we
shall arrive at

(z3 + 1)

(
2n∑
i=2

AO(2n, i)z−i
)2

=

2n∑
i=1

AR
VHP(4n+ 2, i+ 1)

(
zi−4n−1 + z−i

)
, (3.36)

and

(1− z2)

(
2n∑
i=2

AO(2n, i)z−i
)2

=

2n∑
i=1

BVHP(4n+ 2, i)
(
zi−4n−1 − z−i+1

)
. (3.37)

Now, by comparing coefficients in (3.36) and (3.37) we obtain the following results.

Theorem 3.6. The number of order 4n+ 2 VHPASMs with the leftmost occurrence of 1 in
the second row in i-th column is

i−2∑
k=0

AO(2n,k+ 2) (AO(2n, i− k) + AO(2n, i− 3− k)) ,

where AO(2n, j) is given by (3.8) and we take AO(2n,−1) = 0.

Theorem 3.7. The number of order 4n+ 2 VHPASMs with the topmost occurrence of 1 in
the second column in the i-th row is

i−2∑
k=0

AO(2n,k+ 2) (AO(2n, i− k) + AO(2n, i− 1− k)) ,

where AO(2n, j) is given by (3.8).
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Remark 4. From above it follows that

AC
VHP(4n+ 2, i) = AR

VHP(4n+2, i)+AC
VHP(4n+ 2, i−1)−AC

VHP(4n+2, i− 2). (3.38)





4
A S M S W I T H O F F - D I A G O N A L S Y M M E T RY

This chapter deals with ASMs with off-diagonal symmetry; in particular we look
at ASMs with off-diagonal and off-antidiagonal symmetry (OOSASMs) and ASMs
with off-diagonal and vertical symmetry (VOSASMs).

4.1 off-diagonally and off-antidiagonally symmetric asms

An ASM which is diagonally and anti-diagonally symmetric with each entry in the
diagonal and antidiagonal equal to 0 are called off-diagonally and off-antidiagonally
symmetric ASMs (OOSASMs). These matrices occur for order 4n and no product
formula for their enumeration is currently known or conjectured. However, Ayyer,
Behrend and Fischer [3] introduced the concept of an odd order OOSASM while
studying extreme behaviour of odd order diagonally and anti-diagonally symmetric
ASMs (DASASMs). We explain this briefly below.

Consider the DASASM of order 9 in Subsection 3.2.2, which is given below again

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 1 0

1 −1 1 −1 1 −1 1 −1 1

0 1 0 0 −1 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0



.

We notice that this DASASM is determined completely by the entries in red. This
portion of the matrix is called a fundamental triangle. In general a DASASM of order
2n+ 1 with entries ai,j (1 6 i, j 6 2n+ 1) is determined by the fundamental triangle
{(i, j)|1 6 i 6 n+ 1, i 6 j 6 2n+ 2− i}. Any DASASM of order 2n+ 1 with 2n entries
equal to 0 along the portions of the diagonals that lie in this fundamental triangle
is called an OOSASM of order 2n+ 1. The central entry of such a matrix is always
(−1)n. The matrix above is an example of an odd order OOSASM. Ayyer, Behrend
and Fischer [3] proved that the number of order 4n− 1 OOSASMs is the same as the
number of order 4n+ 1 VHSASMs and that the number of order 4n+ 1 OOSASMs
is the same as the number of order 4n+ 3 VHSASMs. The aim of this section is to
give generating functions for the refined enumeration of OOSASMs with respect to
the position of the unique 1 in the first row of such matrices.

The correspondence between ASMs and the six-vertex model extends to this case
as well via the grid in Figure 4.1. The correspondence between the degree 4 vertices

39
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x1 x2 x3 x4 x5 x4 x3 x2 x1

Figure 4.1: The grid corresponding to DASASMs.

of the grid and the entries in the fundamental triangle is same as in Figure 2.2. The

vertices of degree 1, namely and corresponds to entries 1 and −1 respectively. Both
of them carry a weight of 1. The remaining vertices of degree 2 are also fixed in our
case as the boundary entries are always a 0. So we take their weights to be 1 as well,
as they do not make any difference in enumeration results. We also assume n > 1
unless otherwise mentioned. For n = 0, there is no OOSASM of order 2n+ 1 = 1.

Ayyer, Behrend and Fischer proved the following theorem for the partition function
of OOSASMs ZOO(n; x1, x2, . . . , xn+1) [3, Theorem 7.1] (up to some normalization
factor).

Theorem 4.1. The OOSASM partition function of order n is given by

ZOO(n; x1, x2, . . . , xn+1) = ZO
(⌈n
2

⌉
; x1, x2, . . . , x2dn2 e

)
×Q

(⌈
n+ 1

2

⌉
; x1, x2, . . . , x2dn+12 e−1

)
,

where ZO(m; x1, x2, . . . , x2m) is given by equation (3.5) and

Q(m; x1, x2, . . . , x2m−1) = σ(q
2)−(m−1)(2m−1)

∏
16i<j62m

σ(qxixj)σ(qx̄ix̄j)

σ(xix̄j)

× Pf
16i<j62m


σ(xix̄j)
σ(qxixj)

+
σ(xix̄j)
σ(qx̄ix̄j)

, j < 2m

1, j = 2m

 .

In the following, we will specialize

(x1, x2, . . . , xn+1) = (x, 1, 1, . . . , 1) as well as q+ q̄ = 1

in the partition function. We will now explore how this specialization can be ex-
pressed in terms of AOO(2n+ 1, i), the number of OOSASMs of order 2n+ 1 where
the unique 1 in the first row is at the i-th column.

We notice that there is a unique occurrence of a in the first row, say at position

i. This forces the other degree 4 vertices to its left to be of type , and to its right

to be of type . The left boundary vertex is forced to be and the right boundary

vertex is forced to be . This gives us

ZOO(n; x, 1, . . . , 1︸ ︷︷ ︸
n

) =

2n+1∑
i=1

AOO(2n+ 1, i)
(
σ(qx)

σ(q2)

)i−2(
σ(qx̄)

σ(q2)

)2n−i
. (4.1)
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We now perform the change of variable

z =
σ(qx̄)

σ(qx)

and use q+ q̄ = 1 to eliminate x from equation (4.1) to get

ZOO(n; x, 1, . . . , 1︸ ︷︷ ︸
n

) =
(−1)n−1z2n

(z− 1− z2)n−1

2n+1∑
i=1

AOO(2n+ 1, i)z−i. (4.2)

Ayyer, Behrend and Fischer [3, Theorem 7.2] also showed that

ZOO(2n− 1; x1, x2, . . . , x2n)

= 3−(n−1)(2n−1)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, x22, . . . , x22n)

× Sp4n−2(n− 1,n− 2,n− 2,n− 3,n− 3, . . . , 1, 1; x21, x22, . . . , x22n−1) (4.3)

and

ZOO(2n; x1, x2, . . . , x2n+1)

= 3−n(2n−1)Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, x22, . . . , x22n)

× Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, x22, . . . , x22n+1). (4.4)

By comparing equations (3.9), (3.18), (4.2), (4.3) and (4.4) we get the following pairs
of equations

(−1)n−13−n
2+2n−1(z− 1− z2)n−1

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16i6j6n

Qn−1,ix
2i−4j+2

 =

4n−1∑
i=1

AOO(4n− 1, i)z2n−2−i, (4.5)

where n > 1; and

(−1)n3−n
2

(z− 1− z2)n

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16i6j6n+1

Qn,ix
2i−4j+2

 =

4n+1∑
i=1

AOO(4n+ 1, i)z2n−i. (4.6)

From equation (4.5) we get the following result.
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Theorem 4.2. Let AOO(4n − 1, i) denote the number of diagonally and off-diagonally
symmetric ASMs of order 4n− 1 with the unique 1 of the first row in the i-th column. Then
for all n > 1 the following is satisfied

3−n
2+2n−1

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16i6j6n

Qn−1,i(zq− 1)
n+i−2j(q− z)n−i+2j−2(−q)−n+1


=

4n−1∑
i=1

AOO(4n− 1, i)z2n−2−i,

where every quantity appearing in the left-hand side is explicitly known.

Further, from equation (4.6), we get the following result.

Theorem 4.3. Let AOO(4n + 1, i) denote the number of diagonally and off-diagonally
symmetric ASMs of order 4n+ 1 with the unique 1 of the first row in the i-th column. Then,
for all n > 1 the following is satisfied

3−n
2

(
2n∑
i=2

AO(2n, i)z−i
)

×

 ∑
16i6j6n+1

Qn,i(zq− 1)
n+i−2j+1(q− z)n−i+2j−1(−q)−n


=

4n+1∑
i=1

AOO(4n+ 1, i)z2n−i,

where every quantity appearing in the left-hand side is explicitly known.

Remark 5. From Theorems 3.5 and 4.2 we get the following

AVH(4n+ 1, i) = AOO(4n− 1, i) + AOO(4n− 1, i− 1), (4.7)

and, from Theorems 3.4 and 4.3 we get the following

AVH(4n+ 3, i) = AOO(4n+ 1, i) + AOO(4n+ 1, i− 1). (4.8)

In the above we assume AOO(2n+ 1,−1) = 0. These are similar to the relationship between
refined enumeration of VSASMs and OSASMs (cf. equation (3.11)).

Remark 6. Analogous to equations (3.21) and (3.27) we shall get the following pairs of
equations

(−1)n
2

3−2n
2−n(z− 1− z2)2ns(2n, 2n− 1, 2n− 1, . . . , 1, 1, 0, 0; x2, x̄2, . . . , 1)

=

4n−1∑
i=1

AOO(4n− 1, i)z4n−i
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and

− 3−2n
2−3n−1(z− 1− z2)2n+1s(2n+ 1, 2n, 2n, . . . , 1, 1, 0, 0; x2, x̄2, 1, . . . , 1)

=

4n+1∑
i=1

AOO(4n+ 1, i)z4n+2−i.

4.2 vertically and off-diagonally symmetric asms

An ASM which is vertically symmetric as well as off-diagonally symmetric with a
null diagonal except for the central entry is called a vertically and off-diagonally
symmetric ASM (VOSASM). These matrices occur for odd orders 8n+ 1 and 8n+ 3.
This class was first considered by Okada [31], who proved enumeration formulas
for them. VOSASMs are also OOSASMs of odd order as described in the previous
section. The off-antidiagonal symmetry follows from the vertical symmetry, which
in turn makes them vertically and horizontally symmetric. In fact VOSASMs are
special cases of totally symmetric ASMs (TSASMs). No product formula for TSASMs
is currently known or conjectured.

An example of such a VOSASM is the matrix from the previous section

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 1 0

1 −1 1 −1 1 −1 1 −1 1

0 1 0 0 −1 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 1 0 0 0 0



.

Clearly the array of numbers in red are sufficient to construct the whole matrix in
our example. Since VOSASMs have vertical symmetry so we can ask for their refined
enumeration with respect to the position of the first occurrence of a 1 in the second
row. Let these numbers be denoted by AVOS(n, i) for order n VOSASMs. The aim of
this section is to give generating functions for these numbers.

The correspondence between VOSASMs and the six-vertex model is via the grid
shown in Figure 4.2, which is now a combination of U-turns and the triangular grid
from last section. This grid was first considered by Kuperberg [28]. The weights of
the degree 4 vertices remain the same as in Figure 2.2, the U-turns have the weights
described in Figure 3.3 and the degree 2 vertices will have weight 1 as they do not
make any difference in our results.

We shall use the following formula for the partition function that was derived by
Kuperberg [28, Theorem 10] (up to some normalization factor).
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x1 x̄1 x2 x̄2

qx1

qx2

Figure 4.2: The grid corresponding to VOSASMs.

Theorem 4.4.

ZUO(n; x1, x2, . . . , x2n) =
σ(q2)3n−8n

2
σ(q)2n

∏
i62n σ(q

2x2i )∏
i<j62n σ(x̄ixj)

2
∏
i6j62n σ(xixj)

2

×
∏

i<j62n

σ(qx̄ixj)
2σ(qxix̄j)

2σ(qxixj)
2σ(qx̄ix̄j)

2

× Pf16i<j62n

(
σ(x̄ixj)σ(xixj)

(
1

σ(qxixj)σ(qx̄ix̄j)
−

1

σ(qx̄ixj)σ(qxix̄j)

))
× Pf16i,j62n

(
σ(x̄ixj)σ(xixj)

(
σ(bxi)σ(bxj)

σ(qxixj)
−
σ(bxi)σ(bx̄j)

σ(qxix̄j)

−
σ(bx̄i)σ(bxj)

σ(qx̄ixj)
+
σ(bx̄i)σ(bx̄j)

σ(qx̄ix̄j)

))
We shall again specialize

(x1, x2, . . . , x2n) = (x, 1, . . . , 1) as well as q+ q̄ = 1,

in the following. But first, we notice that due to the imposed symmetries we have

AVOS(n, 1) = AVOS(n, 2) = 0 for all n.

There will be two cases depending on whether the VOSASM is of order 8n+ 1 or
8n+ 3. For order 8n+ 1 we further specialize

q+ q̄ = 1 as well as b = q, (4.9)

and also assume n > 1 for this case. When n = 1, the only such VOSASM of order 9
is the one above, and for n = 0 no VOSASM exist. For order 8n+ 3 we specialize

q+ q̄ = 1 as well as b = q̄, (4.10)

and assume n > 1. When n = 0 in this case, then the only such VOSASM is0 1 0

1 −1 1

0 1 0

 .



4.2 vertically and off-diagonally symmetric asms 45

The calculations for these cases are similar to the cases for VSASMs and order
4n+ 3 VHSASMs. Analogous to equations (3.2) and (3.14) we shall get the following
pairs of equations.

ZUO(n; x, 1, . . . , 1︸ ︷︷ ︸
2n−1

)

=

4n∑
i=3

AVOS(8n+ 1, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)8n−2(
σ(qx̄)

σ(q2)

)−3

σ(q2x)σ(q2)2n−1

+

4n∑
i=3

AVOS(8n+ 1, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)8n−3(
σ(qx)

σ(q2)

)−2

σ(x̄)σ(q2)2n−1

+

4n∑
j=3

AVOS(8n+ 1, j)
(
σ(qx̄)

σ(qx)

)j+2 4n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)8n−2i−6
× σ(x̄)σ(q2)2n−1,

and

ZUO(n; x, 1, . . . , 1︸ ︷︷ ︸
2n−1

)

=

4n∑
i=2

BVOS(8n+ 3, i)
(
σ(qx̄)

σ(qx)

)i(
σ(qx)

σ(q2)

)8n−2(
σ(qx̄)

σ(q2)

)−3

σ(x)σ(q̄2)2n−1

+

4n∑
i=2

BVOS(8n+ 3, i)
(
σ(qx)

σ(qx̄)

)i(
σ(qx̄)

σ(q2)

)8n−3(
σ(qx)

σ(q2)

)−2

σ(q̄2x̄)σ(q̄2)2n−1

+

4n∑
j=2

BVOS(8n+ 3, j)
(
σ(qx̄)

σ(qx)

)j+2 4n∑
i=j+1

(
σ(qx)

σ(q2)

)2i−2(
σ(qx̄)

σ(q2)

)8n−2i−6
× σ(q̄2x̄)σ(q̄2)2n−1,

where
BVOS(8n+ 3, i) = AVOS(8n+ 3, i+ 1) − AVOS(8n+ 3, i).

We substitute z =
σ(qx̄)

σ(qx)
and eliminate x from the above equations to get the

following pairs of equations

− σ(q2)6n−4σ(qx̄)−8n+4
1+ z

1− 2z
ZUO(n; x, 1, . . . , 1︸ ︷︷ ︸

2n−1

)

=

4n∑
i=3

AVOS(8n+ 1, i)(zi−8n+1 + z−i+2), (4.11)
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provided (4.9) holds; and

− σ(q2)6n−4σ(qx̄)−8n+4
1− z2

1− 2z
ZUO(n; x, 1, . . . , 1︸ ︷︷ ︸

2n−1

)

=

4n∑
i=2

BVOS(8n+ 3, i)(zi−8n+1 − z−i+3), (4.12)

provided (4.10) holds.
Okada [31, Theorem 2.5] proved that

2n∏
i=1

(xi + x̄i)

2n∏
i=1

σ(q2x2i )
−1ZUO(n; x1, x2, . . . , x2n)

= 3−4n
2+3n(Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x22n))

3

×O4n
(
n+

1

2
,n−

1

2
,n−

1

2
,n−

3

2
,n−

3

2
, . . . ,

3

2
,
3

2
,
1

2
; x21, . . . , x22n

)
(4.13)

provided (4.9) holds; and

2n∏
i=1

σ(q2x2i )
−1ZUO(n; x1, x2, . . . , x2n)

= 3−4n
2+3n(Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x22n))

3

× Sp4n+2(n,n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x21, . . . , x22n, 1) (4.14)

provided (4.10) holds. Transforming the even orthogonal group character in equation
(4.13) for our special case, into a symplectic group character using a result of Ayyer
and Behrend [2, Proposition 5, and then use equation (7)], we get the following for
our special values

ZUO(n; x, 1, . . . , 1︸ ︷︷ ︸
2n−1

) = 3−4n
2+5n−2σ(q2)2n−1σ(q2x2)(x2 + 1+ x̄2)

× (Sp4n(n− 1,n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1))3

× Sp4n−2(n− 1,n− 2,n− 2, . . . , 0, 0; x2, 1, . . . , 1),

(4.15)

provided (4.9) holds.
From equations (3.9), (3.18), (4.11) and (4.15), after some simplifications we get

(−1)n−13−n
2+2n−1(1+ z)(z− 1− z2)n−1

(
2n∑
i=2

AO(2n, i)z−i
)3

×

 ∑
16j6i6n

Qn−1,ix
2i−4j+2

 =

4n∑
i=3

AVOS(8n+ 1, i)(zi−6n−4 + z2n−i−3),

(4.16)
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provided (4.9) holds and where Qn−1,i is given by (3.19). On the other hand, from
equations (3.9), (3.18), (4.12) and (4.14) we get

(−1)n3−n
2

(1− z2)z−2n+4(z− 1− z2)n

(
2n∑
i=2

AO(2n, i)z−i
)3

×

 ∑
16i6i6n+1

Qn,ix
2i−4j+2

 =

4n∑
i=2

BVOS(8n+ 3, i)(zi−8n+1 − z−i+3),

(4.17)

provided (4.10) holds and where Qn,i is given by (3.19).
After some simplifications the above pairs of equations give the following theo-

rems.

Theorem 4.5. Let AVOS(8n+ 1, i) denote the number of order 8n+ 1 VOSASMs with the
first 1 in the second row in the i-th column. Then, for all n > 1 the following is satisfied

3−n
2+2n−1(1+ z)

(
2n∑
i=2

AO(2n, i)z−i
)3

×

 ∑
16j6i6n

Qn−1,i(zq− 1)
n+i−2j(q− z)n−i+2j−2(−q)−n+1


=

4n∑
i=3

AVOS(8n+ 1, i)(zi−6n−4 + z2n−i−3),

where every quantities appearing on the left hand side is explicitly known.

Theorem 4.6. Let AVOS(8n+ 3, i) denote the number of order 8n+ 3 VOSASMs with the
first 1 in the second row in the i-th column. Then, for all n > 1 the following is satisfied

3−n
2

(1− z2)

(
2n∑
i=2

AO(2n, i)z−i
)3

×

 ∑
16i6i6n+1

Qn,i(zq− 1)
n+i−2j+1(q− z)n−i+2j−1(−q)−n


=

4n∑
i=2

(AVOS(8n+ 3, i+ 1) − AVOS(8n+ 3, i))(zi−6n−3 − z2n−i−1),

where every quantities appearing on the left hand side is explicitly known, and AVOS(8n+

3, 1) = AVOS(8n+ 3, 2) = 0 for all n.

Remark 7. From Theorems 3.5 and 4.5 we get(
2n∑
i=2

AO(2n, i)z−i
)2( 2n∑

i=2

AVH(4n+ 1, i)(zi−2n−2 + z2n−1−i)

)

=

4n∑
i=3

AVOS(8n+ 1, i)(zi−6n−4 + z2n−i−3) (4.18)
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and from Theorems 3.4 and 4.6 we get

(
2n∑
i=2

AO(2n, i)z−i
)2

×
(
2n+1∑
i=1

(AVH(4n+ 3, i+ 1) − AVH(4n+ 3, i))
(
zi−2n−1 − z−i+2n+1

))

=

4n∑
i=2

(AVOS(8n+ 3, i+ 1) − AVOS(8n+ 3, i))(zi−6n−3 − z2n−i−1). (4.19)



5
A S M S W I T H Q UA RT E R - T U R N S Y M M E T RY

This chapter deals with ASMs with quarter-turn symmetry; that is ASMs invariant
under a 90◦ rotation. In particular we look at even and odd order quarter-turn
symmetric ASMs (QTSASMs) and a related class of matrices called quasi quarter-
turn symmetric ASMs (qQTSASMs).

5.1 quarter-turn symmetric asms

As a first observation about QTSASMs, we see that these ASMs cannot occur for
order 4n+ 2 [1, Lemma 4], consider the QTSASM of order 2n where the entries are
given by ai,j (1 6 i, j 6 2n). Then we have

2n =
∑

16i,j62n

ai,j = 4
∑

16i,j6n

ai,j,

and this implies that 2|n. So for the even case they occur only for order 4n. Order 4n
QTSASMs were enumerated by Kuperbeg [28], while Razumov and Stroganov [36]
enumerated them for odd order. In this section, we will give refined enumeration
formulas for this class of ASMs with respect to the position of the unique 1 in the
first row. These results were conjectured by Robbins [38]. We deal with the even case
in Subsection 5.1.1 and with the odd case in Subsection 5.1.2.

Since the proofs are similar for all cases (in this section and also in Section 5.2),
we will only derive the results in full for the even QTSASM case and indicate
the steps for the other cases. Throughout this section, we will consider the case
~x = (x, 1, 1, . . . , 1) and q+ q̄ = 1, unless otherwise mentioned.

5.1.1 Even Order QTSASMs

Kuperberg [28] enumerated this class of QTSASMs using the six vertex model; since
a quarter of such an ASM is enough to determine the whole ASM, we can see that
the six vertex model corresponding to even order QTSASMs will be the one shown
in Figure 5.1, where there are 2n many spectral parameters associated with it if the
QTSASM is of order 4n, which are denoted by xi’s. The vertex weights and bijection
with the normal ASMs which was shown in Section 2 carry forward to this class
as well, with one difference: the arrows of the configuration will change sign when
they move through the circular turns. For instance, consider the simplest possible
QTSASM of even order 

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 .

49



50 asms with quarter-turn symmetry

x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

Figure 5.1: Six vertex configuration of QTSASM of order 4n.

The six-vertex configuration of this matrix is now given by Figure 5.2.

Figure 5.2: Six vertex configuration of an even order QTSASM.

Let AQT(n, i) be the total number of QTSASMs of order n such that the unique
1 in the last row is at the i-th position. By symmetry of the ASMs, this is also the
number of QTSASMs of order n such that the unique 1 in the first row is at the i-th
position. In the sequel we will use this description instead of the last row, without
further commentary. The weight of the last row of such a QTSASM of order 4n
would be (

σ(qx)

σ(q2)

)i−2(
σ(qx)

σ(q2)

)4n−i−1
.

(The first entry is always a 0 for QTSASMs, and the weight of that entry is σ(qxx̄)
σ(q2)

=

1 when q + q̄ = 1.) If ZQ(4n; x1, x2, . . . , x2n) denotes the partition function of
QTSASMs of order 4n, then we have

4n−1∑
i=2

AQT(4n, i)zi−2 =
ZQ(4n; x, 1, 1, . . . , 1)
σ(q2)3−4nσ(qx)4n−3

, (5.1)
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where z =
σ(qx)

σ(qx)
and from Kuperberg [28, Theorem 10] we have (up to some

normalization factor)

ZQ(4n; x1, x2, . . . , x2n) = σ(q2)4n−4n
2

∏2n
i,j=1 α(x̄ixj)

2∏2n
i,j=1 σ(x̄ixj)

2

× Pf16i<j62n

(
σ(x̄ixj)

α(x̄ixj)

)
Pf16i<j62n

(
σ(x̄2i x

2
j )

α(x̄ixj)

)
.

Further we have the following analogous equations from Razumov and Stroganov [35,
Equation (38)],

n∑
i=1

A(n, i)zi−1 =
Z(n; x, 1, 1, . . . , 1)
σ(q2)1−nσ(qx)n−1

(5.2)

and

2n∑
i=1

AHT(2n, i)zi−1 =
ZH(2n; x, 1, 1, . . . , 1)
σ(q2)1−2nσ(qx)2n−1

(5.3)

where A(n, i) denotes the number of ASMs of order n with the unique 1 in the first
row in the i-th column, given by Zeilberger [44]

A(n, i) =
(
n+ i− 2

n− 1

)
(2n− i− 1)!

(n− i)!

n−2∏
j=0

(3j+ 1)!
(n+ j)!

and AHT(n, i) denotes the number of order n half-turn symmetric ASMs (HTSASMs;
ASMs which are invariant under a 180◦ rotation are called half-turn symmetric
ASMs) with the unique 1 in the first row in the i-th column, given by Stroganov [41]

AHT(2n, i) =
(2n− 1)!2

(n− 1)!2(3n− 3)!(3n− 1)!

n−1∏
j=0

(3j+ 2)(3j+ 1)!2

(3j+ 1)(n+ j)!2

×
i∑
j=1

(
(n2 −nj+ (j− 1)2(n+ j− 3)!)(2n− j− 1)!(n+ i− j− 1)!(2n− i+ j− 2)!

(j− 1)!(n− j+ 1)!(i− j)!(n− i+ j− 1)!

)
.

Also
Z(n; x1, x2, . . . , xn,y1,y2, . . . ,yn)

is the partition function of order n ASMs and

ZH(2n; x1, x2, . . . , xn,y1,y2, . . . ,yn)

is the partition function of order 2n HTSASMs, which are given by Kuperberg [28,
Theorem 10] as follows (up to some normalization factor)

Z(n; x1, . . . , xn,y1, . . . ,yn) =
σ(q2)n−n

2∏
i,j α(xix̄j)∏

i<j σ(x̄ixj)σ(yiȳj)
det

16i,j6n

(
1

α(xix̄j)

)
,
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and

ZH(2n; x1, . . . , xn,y1, . . . ,yn) =
σ(q2)n−2n

2∏
i,j α(xix̄j)

2∏
i<j σ(x̄ixj)

2σ(yiȳj)2

× det
16i,j6n

(
1

α(xix̄j)

)
det

16i,j6n

(
1

σ(qx̄iyj)
+

1

σ(qxiȳj

)
.

By results of Okada [31, Theorems 2.4 and 2.5], when q+ q̄ = 1, we have

ZQ(4n; x, 1, . . . , 1) = (Z(n; x, 1, . . . , 1))2ZH(2n; x, 1, . . . , 1). (5.4)

Combining equations (5.1) to (5.4), we get the following result.

Theorem 5.1.

4n−1∑
i=2

AQT(4n, i)zi−2 =

(
n∑
i=1

A(n, i)zi−1
)2( 2n∑

i=1

AHT(2n, i)zi−1
)

.

Theorem 5.1 allows us to give a formula for the refined enumeration of even order
QTSASMs by comparing the coefficients of z from both sides of the equation.

5.1.2 Odd Order QTSASMs

x1 x2 x3 x4 x5

x1

x2

x3

x4

Figure 5.3: Six vertex configuration of QTSASM of order 4n+ 1.

For odd order QTSASMs (say of order 2m+ 1), we can notice that the central entry
of the matrix will be (−1)m. Similar to the grid described in Subsection 5.1.1, we
will have the configuration in Figure 5.3 if m = 2n and in Figure 5.4 if m = 2n+ 1.
These were used by Razumov and Stroganov to enumerate odd order QTSASMs
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x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

Figure 5.4: Six vertex configuration of QTSASM of order 4n+ 3.

[36], and they found a formula similar to the one found by Kuperberg for even order
QTSASMs. We also notice that for an order 2m+ 1 QTSASM, the grid has m+ 1

spectral parameters.
We proceed in a similar way, as in the case for even QTSASMs. Analogous to

equation (5.1), we will have the following equations.

4n∑
i=2

AQT(4n+ 1, i)zi−2 =
ZQ(4n+ 1; x, 1, 1, . . . , 1)
σ(q2)2−4nσ(qx)4n−2

, (5.5)

and
4n+2∑
i=2

AQT(4n+ 3, i)zi−2 =
ZQ(4n+ 3; x, 1, 1, . . . , 1)
σ(q2)−4nσ(qx)4n

, (5.6)

where z =
σ(qx̄)

σ(qx)
and the partition functions are given by Razumov and Stroganov

[36, Equations (10) and (11)] (up to some normalization factor). Further we have the
following analogous equation from Razumov and Stroganov [35],

2n+1∑
i=1

AHT(2n+ 1, i;w)ti−1 =
ZH(2n+ 1; x, 1, 1, . . . , 1)
σ(q2)−2nσ(qx)2n

, (5.7)

where ZH(2n+ 1; x1, x2, . . . , xn+1,y1,y2, . . . ,yn+1) is the partition function of odd
order HTSASMs, which was found by Razumov and Stroganov [35, Theorem 1] (up
to some normalization factor).



54 asms with quarter-turn symmetry

Again, analogous to equation (5.4), we have the following equations from Razumov
and Stroganov [36], when q+ q̄ = 1

ZQ(4n+ 1; x, 1, . . . , 1) = (Z(n; x, 1, . . . , 1))2ZH(2n+ 1; x, 1, . . . , 1), (5.8)

and

ZQ(4n+ 3; x, 1, . . . , 1) = (Z(n+ 1; x, 1, . . . , 1))2ZH(2n+ 1; x, 1, . . . , 1). (5.9)

Now, combining equations (5.2) and (5.5) to (5.9), we get the following result.

Theorem 5.2.

4n∑
i=2

AQT(4n+ 1, i)zi−2 =

(
n∑
i=1

A(n, i)zi−1
)2(2n+1∑

i=1

AHT(2n+ 1, i)zi−1
)

,

and

4n+2∑
i=2

AQT(4n+ 3, i)zi−2 =

(
n+1∑
i=1

A(n+ 1, i)zi−1
)2(2n+1∑

i=1

AHT(2n+ 1, i)zi−1
)

.

5.2 quasi quarter-turn symmetric asms

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

Figure 5.5: Six vertex configuration of qQTSASM of order 4n+ 2.

As pointed out in Section 5.1, there are no even order QTSASMs of order 4n+ 2.
However, Duchon [13] introduced a new type of ASM, called quasi QTSASMs
(qQTSASMs) which follows all the conditions of an ASM and has quarter-turn
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symmetry for all entries except the four entries in the middle, which can be either
{1, 0, 0, 1} or {0,−1,−1, 0}. Below we give examples of both these types of matrices.

0 0 1 0 0 0

0 1 −1 0 1 0

0 0 1 0 −1 1

1 −1 0 1 0 0

0 1 0 −1 1 0

0 0 0 1 0 0





0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 −1 1 0

0 1 −1 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0


Philippe Duchon [13] stated two conjectures related to the enumeration of qQT-

SASMs: the first of these is on the unrestricted enumeration of this class of ASMs,
which was subsequently proved by Jean-Christophe Aval and Duchon [1] by study-
ing the six vertex configuration associated with the even order qQTSASMs (shown in
Figure 5.5); the second conjecture deals with the refined enumeration of qQTSASMs
with respect to the position of the unique 1 in the first row, which we prove below.

Theorem 5.3. Let AqQT(n, i) denote the number of order n qQTSASMs with the unique 1
in the first row in the i-th column, then we have

4n+1∑
i=2

AqQT(4n+ 2, i)zi−2 =

(
n∑
i=1

A(n, i)zi−1
)(

n+1∑
i=1

A(n+ 1, i)zi−1
)

×
(
2n+1∑
i=1

AHT(2n+ 1, i)zi−1
)

.

Proof. The proof is similar to the proof of Theorem 5.1, hence we will just sketch it.
Analogous to equation (5.1) we have the following equation in this case, provided
q+ q̄ = 1

4n+1∑
i=2

AqQT(4n+ 2, i)zi−2 =
ZqQ(4n+ 2; x, 1, 1, . . . , 1)
σ(q2)1−4nσ(qx)4n−1

, (5.10)

where ZqQ(4n+ 2; x1, x2, . . . , x2m+1) is the partition function of order 4n+ 2 qQT-
SASMs with spectral parameters ~x, which was found by Aval and Duchon [1] (up to
some normalization factor).

We now use the following result of Aval and Duchon [1, Theorem 6], if q+ q̄ = 1

then we have

ZqQ(4n+ 2; x, 1, . . . , 1) = Z(n; x, 1, . . . , 1)Z(n+ 1; x, 1, . . . , 1)ZH(2n+ 1; x, 1, . . . , 1).

(5.11)

Combining equations (5.10),(5.2),(5.3) and (5.11) we obtain the result.





Part II

D O M I N O T I L I N G S O F A Z T E C R E C TA N G L E S

In this part we enumerate domino tilings of an Aztec rectangle with
arbitrary defects of size one on all boundary sides. This result extends
previous work by different authors: Mills-Robbins-Rumsey and Elkies-
Kuperberg-Larsen-Propp. We use the method of graphical condensation
developed by Kuo and generalized by Ciucu, to prove our results; a
common generalization of both Kuo’s and Ciucu’s result is also presented
here. This part corresponds to work already published [39].
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G R A P H I C A L C O N D E N S AT I O N A N D D O M I N O T I L I N G S

In this chapter we exploit the connection between domino tilings and perfect match-
ings of planar graphs (discussed in Section 1.3), to use a powerful technique to count
such perfect matchings, called Kuo condensation. We also present a generalization of
this technique. We shall use this method extensively in the next two chapters.

Let G be a weighted graph, where the weights are associated with each edge of G,
and let M(G) denote the sum of the weights of the perfect matchings of G, where
the weight of a perfect matching is taken to be the product of the weights of its
constituent edges. We are interested in graphs with edge weights all equaling 1,
which corresponds to tilings of the region in our special case. The relevant results of
Eric Kuo [25] that are needed in the next chapter are the following.

Theorem 6.1. [25, Theorem 2.3] Let G = (V1,V2,E) be a plane bipartite graph in which
|V1| = |V2|. Let w, x,y and z be vertices of G that appear in cyclic order on a face of G. If
w, x ∈ V1 and y, z ∈ V2 then

M(G− {w, z})M(G− {x,y}) = M(G)M(G− {w, x,y, z})+M(G− {w,y})M(G− {x, z}).

Theorem 6.2. [25, Theorem 2.5] Let G = (V1,V2,E) be a plane bipartite graph in which
|V1| = |V2|+ 2. Let the vertices w, x,y and z appear in that cyclic order on a face of G. Let
w, x,y, z ∈ V1, then

M(G− {w,y})M(G− {x, z}) = M(G− {w, x})M(G− {y, z})+M(G− {w, z})M(G− {x,y}).

Theorem 6.3. [25, Theorem 2.1] Let G = (V1,V2,E) be a plane bipartite graph with
|V1| = |V2| and w, x,y, z be vertices of G that appear in cyclic order on a face of G. If
w,y ∈ V1 and x, z ∈ V2 then

M(G)M(G− {w, x,y, z}) = M(G− {w, x})M(G− {y, z})+M(G− {w, z})M(G− {x,y}).

In fact, Theorems 6.1, 6.2 and 6.3 follow from the following non-bipartite version of
Kuo condensation.

Theorem 6.4. [26, Proposition 1.1] Let G be a planar graph and w, x,y, z be vertices of G
that appear in cyclic order on a face of G. Then

M(G)M(G− {w, x,y, z}) + M(G− {w,y})M(G− {x, z})

= M(G− {w, x})M(G− {y, z}) + M(G− {w, z})M(G− {x,y}).

To prove our main result in Chapter 8 we shall use the following result of Ciucu
[10].

Theorem 6.5 (Ciucu, [10]). Let G be a planar graph with the vertices a1,a2, . . . ,a2k
appearing in that cyclic order on a face of G. Consider the skew-symmetric matrix A =

(aij)16i,j62k with entries given by

aij := M(G \ {ai,aj}), if i < j. (6.1)

59
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Then we have that

M(G \ {a1,a2, . . . ,a2k}) =
Pf(A)

[M(G)]k−1
. (6.2)

For A = (ai,j), a 2n× 2n anti-symmetric matrix, the Pfaffian of A (denoted Pf(A))
is defined as

Pf(A) =
∑

π={(i1,j1),...,(in,jn)}∈Γn

sgnπ
n∏
k=1

aik,jk

where sgnπ = sgn i1j1i2j2 . . . injn and Γn is the set of all perfect matchings of K2n.
There are many ways to write π, so to have Pf(A) well-defined we assume that
ik < jk and i1 < i2 < · · · < in.

Although Theorem 6.5 is enough for our purposes, we state and prove a slightly
more general version of the theorem below. It turns out that our result is a common
generalization for the condensation results of Kuo [25] as well as Theorem 6.5 which
follows immediately from Theorem 6.6 below if we consider a1, . . . ,a2k ∈ V(G). We
also mention that Corollary 6.7 of Theorem 6.6, does not follow from Theorem 6.5.

To state and prove our result, we will need to make some notations and concepts
clear. We consider the symmetric difference on the vertices and edges of a graph.
Let H be a planar graph and G be an induced subgraph of H and let W ⊆ V(H).
Then we define G+W to be the induced subgraph of H with vertex set V(G+W) =

V(G)∆V(W), where ∆ denotes the symmetric difference of sets. Now we are in a
position to state our result below.

Theorem 6.6. Let H be a planar graph and let G be an induced subgraph of H with
the vertices a1,a2, . . . ,a2k appearing in that cyclic order on a face of H. Consider the
skew-symmetric matrix A = (aij)16i,j62k with entries given by

aij := M(G+ {ai,aj}), if i < j. (6.3)

Then we have that

M(G+ {a1,a2, . . . ,a2k}) =
Pf(A)

[M(G)]k−1
. (6.4)

Corollary 6.7. [25, Theorem 2.4] Let G = (V1,V2,E) be a bipartite planar graph with
|V1| = |V2|+ 1; and let w, x,y and z be vertices of G that appear in cyclic order on a face of
G. If w, x,y ∈ V1 and z ∈ V2 then

M(G− {w})M(G− {x,y, z})+M(G− {y})M(G− {w, x, z}) = M(G− {x})M(G− {w,y, z}).

Proof. Take n = 2, a1 = w,a2 = x,a3 = y,a4 = z and G = H \ {a1} in Theorem
6.6.

The proof of Theorem 6.5 follows from the use of some auxiliary results. Similar to
those results, we need the following proposition to complete our proof of Theorem
6.6.
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Proposition 6.8. Let H be a planar graph and G be an induced subgraph of H with the
vertices a1, . . . ,a2k appearing in that cyclic order among the vertices of some face of H.
Then

M(G)M(G+ {a1, . . . ,a2k}) +
k∑
l=2

M(G+ {a1,a2l−1})M(G+ {a1,a2l−1})

=

k∑
l=1

M(G+ {a1,a2l})M(G+ {a1,a2l}), (6.5)

where {ai,aj} stands for the complement of {ai,aj} in the set {a1, . . . ,a2k}.

Our proof follows closely that of the proof of an analogous proposition given by
Ciucu [10, Proposition 1] with very little difference and hence we refer to it for the
sake of brevity.

Proof. We recast equation (6.5) in terms of disjoint unions of cartesian products as
follows

M(G)×M(G+ {a1, . . . ,a2k})∪M(G+ {a1,a3})×M(G+ {a1,a3})∪ . . .
∪M(G+ {a1,a2k−1})×M(G+ {a1,a2k−1}) (6.6)

and

M(G+ {a1,a2})×M(G+ {a1,a2})∪M(G+ {a1,a4})×M(G+ {a1,a4})∪ . . .
∪M(G+ {a1,a2k})×M(G+ {a1,a2k})∪

(6.7)

where M(F) denotes the set of perfect matchings of the graph F. For each element
(µ,ν) of (6.6) or (6.7), we think of the edges of µ as being marked by solid lines and
that of ν as being marked by dotted lines, on the same copy of the graph H. If there
are any edges common to both then we mark them with both solid and dotted lines.

We now define the weight of (µ,ν) to be the product of the weight of µ and the
weight of ν. Thus, the total weight of the elements in the set (6.6) is same as the
left hand side of equation (6.5) and the total weight of the elements in the set (6.7)
equals the right hand side of equation (6.5). To prove our result, we have to construct
a weight-preserving bijection between the sets (6.6) and (6.7). The construction is
similar to the one given by Ciucu [10, Proposition 1], so we mention only the essential
details below and refer the reader to Ciucu’s proof.

Let (µ,ν) be an element in (6.6). Then we have two possibilities as discussed in the
following. If (µ,ν) ∈M(G)×M(G+ {a1, . . . ,a2k}), we consider the path containing
a1 and change a solid edge to a dotted edge and a dotted edge to a solid edge in
order to obtain a new pair of matchings. Let this pair of matchings be (µ′,ν′). For a
clearer view of this shifting along the path process, we refer the reader to Ciucu’s proof.
The path we have obtained must connect a1 to one of the even-indexed vertices. So
(µ′,ν′) is an element of (6.7).

If (µ,ν) ∈M(G+ {a1,a3})×M(G+ {a1,a3}), then we map it to a pair of matchings
(µ′,ν′) obtained by reversing the solid and dotted edges along the path containing
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a3. With a similar reasoning like above, this path must connect a3 to one of the
even-indexed vertices and a similar argument will show that indeed (µ′,ν′) is an
element of (6.7). If (µ,ν) ∈M(G+ {a1,a2i+1})×M(G+ {a1,a2i+1}) with i > 1, we
have the same construction with a3 replaced by a2i+1.

The map (µ,ν) 7→ (µ′,ν′) is invertible because given an element in (µ′,ν′) of
(6.7), the pair (µ,ν) that is mapped to it is obtained by shifting along the path that
contains the vertex a2i, such that (µ′,ν′) ∈M(G+ {a1,a2i})×M(G+ {a1,a2i}). The
map we have defined is weight-preserving and this proves the proposition.

Now we can prove Theorem 6.6, which is essentially the same proof as that of
Theorem 6.5, but now uses our more general Proposition 6.8.

Proof of Theorem 6.6. We prove the statement by induction on k. For k = 1 it follows
from the fact that

Pf

(
0 a

−a 0

)
= a.

For the induction step, we assume that the statement holds for k− 1 with k > 2.
Let A be the matrix

0 M(G+ {a1,a2}) M(G+ {a1,a3}) · · · M(G+ {a1,a2k})

−M(G+ {a1,a2}) 0 M(G+ {a2,a3}) · · · M(G+ {a2,a2k})

−M(G+ {a1,a3}) −M(G+ {a2,a3}) 0 · · · M(G+ {a3,a2k})
...

...
...

...

−M(G+ {a1,a2k}) −M(G+ {a2,a2k}) −M(G+ {a3,a2k}) · · · 0

 .

By a well-known property of Pfaffians, we have

Pf(A) =
2k∑
i=2

(−1)iM(G+ {a1,ai})Pf(A1i). (6.8)

Now, the induction hypothesis applied to the graph G and the 2k− 2 vertices in
{ai,aj} gives us

[M(G)]k−2M(G+ {a1,ai}) = Pf(A1i), (6.9)

where A1i is same as in equation (6.8). So using equations (6.8) and (6.9) we get

Pf(A) = [M(g)]k−2
∑
i=2

2k(−1)iM(G+ {a1,ai})M(G+ {a1,ai}). (6.10)

Now using Proposition 6.8, we see that the above sum is M(G)M(G+ {a1, . . . ,a2k})
and hence equation (6.10) implies (6.4).
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R E G I O N S W I T H D E F E C T S O N B O U N D A R I E S

This chapter deals with various Aztec rectangles with defects on one or two boundary
sides. We use the methods described in the previous chapter to prove the results.

We define the binomial coefficients that appear in this chapter as follows

(
c

d

)
:=


c(c− 1) · · · (c− d+ 1)

d!
, if d > 0

0, otherwise
.

Our formulas also involve hypergeometric series. We recall that the hypergeometric
series of parameters a1, . . . ,ar and b1, . . . ,bs is defined as

rFs

[
a1, . . . ,ar
b1, . . . ,bs

; z
]
=

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

where the Pochhammer symbol is defined as (n)m := n(n+ 1)(n+ 2) · · · (n+m− 1).
Most of the proofs are quite similar and hence we prove only Propositions 7.5 and
7.7 in full and omit certain details from some of the proofs of the other propositions
in this chapter.

We also fix a notation for the remainder of this thesis as follows: if we remove
the squares labelled 2, 4, 7 from the southeastern boundary of AR4,7 (marked from
bottom to top), we denote it by AR4,7(2, 4, 7). In the derivation of the results in this
chapter, the following corollaries of Theorem 1.2 will be used.

Corollary 7.1. The number of tilings of ARa,a+1(i) is given by

2a(a+1)/2
(
a

i− 1

)
.

Corollary 7.2. The number of tilings of ARa,b(2, . . . ,b− a+ 1) is given by

2a(a+1)/2
(
b− 1

a− 1

)
.

7.1 auxiliary tiling results

Our main results in Chapter 8 are given in terms of tilings of several intermediate
regions which we study in this chapter. In this section, some auxiliary results used
in enumerating domino tilings of these intermediate regions are proved.

The following proposition does not appear explicitly anywhere, but it is used
implicitly in deriving Proposition 7.4.
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z

y

x

w
a

a+ 2

Figure 7.1: An a× (a+ 2) Aztec rectangle with some labelled squares; here a = 5.

Proposition 7.3. Let 1 6 a be a positive integer, then the number of tilings of ARa,a+2

with a defect at the i-th position on the southeastern side counted from the south corner and a
defect on the j-th position on the northwestern side counted from the west corner is given by

2a(a+1)/2
[(

a

i− 2

)(
a

j− 1

)
+

(
a

i− 1

)(
a

j− 2

)]
. (7.1)

i

Figure 7.2: An a× (a+ 2) Aztec rectangle with defects marked; here a = 5, i = 1.

Proof. If j = 1 or j = a+ 2, then the region we want to tile reduces to the type in
Theorem 1.2 due to forced dominoes in any tiling, as can be seen from Figure 7.2
for the case when j = 1. The case when j = a+ 2 is similar. We do not worry about
the case when both i and j equals 1 or a+ 2 because then the expression in (7.1) is
0. It is easy to see that the expression (7.1) is satisfied in all of the other cases. By
symmetry, this also takes care of the cases i = 1 and i = a+ 2.

In the rest of the proof, we now assume that 1 < i, j < a+ 2 and let us denote the
region we are interested in by O(a)i,j. We now use Theorem 6.2 with the vertices as
indicated in Figure 7.1 to obtain the following identity (Figure 7.3).

M(AD(a))M(O(a)i,j) =M(ARa,a+1(i− 1))M(ARa,a+1(j)) (7.2)

+ M(ARa,a+1(j− 1))M(ARa,a+1(i)).

Now, using Theorem 1.1 and Corollary 7.1 in equation (7.2) we get (7.1).
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w

y

(a) AD(a).

x

z

(b) O(a)i,j.

w

x

(c) ARa,a+1(i− 1).

y

z

(d) ARa,a+1(j).

w

z

(e) ARa,a+1(j− 1).

x

y

(f) ARa,a+1(i).

Figure 7.3: Some forced dominoes in the proof of Proposition 7.3 where the vertices we
remove are labelled.

Remark 8. Ciucu and Fischer [11] have a similar result for the number of lozenge tilings of
a hexagon with defects on opposite sides (Proposition 4 in their paper). They also make use of
Kuo’s condensation result, Theorem 6.1 and obtain the following identity

OPP(a,b, c)i,jOPP(a− 2,b, c)i−1,j−1

=OPP(a− 1,b, c)i−1,j−1OPP(a− 1,b, c)i,j
− OPP(a− 1,b− 1, c+ 1)i,j−1OPP(a− 1,b+ 1, c− 1)i−1,j
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where OPP(a,b, c)i,j denotes the number of lozenge tilings of a hexagonHa,b,c with opposite
side lengths a,b, c and with two defects in positions i and j on opposite sides of length a,
where a,b, c, i, j are positive integers with 1 6 i, j 6 a.

In their use of Kuo’s result, they take the graph G to be the planar dual graph of Ha,b,c

with two defects in positions i and j on opposite sides of length a (the resulting number of
lozenge tilings of this region is then OPP(a,b, c)i,j), but if we take the graph G to be the
planar dual graph of Ha,b,c and use Theorem 6.1 with an appropriate choice of labels, we get
the following identity

OPP(a,b, c)i,jH(a− 1,b, c)

= H(a,b, c)OPP(a− 1,b, c)i,j
+ H(a, c− 1,b+ 1,a− 1, c,b)iH(a, c,b,a− 1, c+ 1,b− 1)a−j+1

where H(a,b, c) denotes the number of lozenge tilings of the hexagon with opposite sides of
length a,b, c and H(m,n,o,p,q, r)k denotes the number of lozenge tilings of a hexagon
with side lengths m,n,o,p,q, r with a defect at position k on the side of length m. Then,
Proposition 4 of Ciucu and Fischer [11] follows more easily without the need for contiguous
relations of hypergeometric series that they use in their paper.

The following result does not appear explicitly in the statements of our main
theorems, but this result is essential in deriving Proposition 7.6 later.

k − 1

i

Figure 7.4: An a× b Aztec rectangle with defects marked in black; here a = 4,b = 9,k =

5, i = 5.

Proposition 7.4. Let 1 6 a, i 6 b be positive integers with k = b− a > 0 and y =

min{i,k}, then the number of domino tilings of ARa,b(2, 3, . . . ,k) with a defect on the
northwestern side in the i-th position counted from the west corner as shown in the Figure
7.4 is given by

2a(a+1)/2
(
a+ y− 2

a− 1

)(
a

i− y

)
3F2

[
1, 1− y, i− a− y
i− y+ 1, 2− a− y

;−1
]

.

Proof. Our proof will be by induction on b = a+ k. The base case of induction will
follow if we verify the result for a = 2,k = 1 in which case b = 3. To check our base
case it is now enough to verify the formula for a = 2,k = 1, i = 1, 2, 3, in which case
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y = 1. This is easily verified as when i = 1, we have many forced dominoes and we
get the region shown in Figure 7.5, which is AD(2). When i = 2, we see that the
region we obtain is of the type as described in Corollary 7.1 and finally when i = 3,
then we get a region of the type in Theorem 1.2. It is easily verified that in all these
cases, the regions satisfy the statement of the result.

Figure 7.5: Forced tilings for i = 1 in Proposition 7.6.

We now deal with the case when b > 3, and i = 1 or i = b, before dealing with the
other cases for values of i. If i = 1 we have many forced dominoes and we get the
region shown in Figure 7.5, which is AD(a). Again, if i = b, then we get a region of
the type in Theorem 1.2 due to forced dominoes. In both of these cases the number
of domino tilings of these regions satisfy the formula mentioned in the statement.
From now on, we assume b > 3 and 1 < i < b. We denote the region of the type
shown in Figure 7.4 by ARia,b,k−1. We use Theorem 6.2 here, with the vertices w, x,y
and z marked as shown in Figure 7.6, where we add a series of unit squares to the
northeastern side to make it into an a× (b+ 1) Aztec rectangle. Note that the square
in the i-th position to be removed is included in this region and is labelled by z. The
identity we now obtain is the following (see Figure 7.7 for forcings)

w

x

y

z

Figure 7.6: Labelled a× (b+ 1) Aztec rectangle; here a = 4,b = 9.
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M(AD(a))M(ARia,b+1,k)

= M(AD(a))M(ARia,b,k−1) + Y ·M(ARa,b(2, 3, . . . ,k,k+ 1)) (7.3)

where

Y :=

0, if i 6 k

M(ARa,a+1(a+ k+ 2− i)), if i > k+ 1
. (7.4)

Using equation (7.4) in equation (7.3), we can simplify the relation further to the
following

M(ARia,b+1,k) = M(ARia,b,k−1) +Z ·M(ARa,b(2, 3, . . . ,k+ 1)) (7.5)

where

Z :=


0, if i 6 k
M(ARa,a+1(a+ k+ 2− i))

M(AD(a))
, if i > k+ 1

. (7.6)

It now remains to show that the expression in the statement satisfies equation (7.5).
This is now a straightforward application of the induction hypothesis and some
algebraic manipulation (see the proof of Proposition 7.7 below for a more detailed
proof of a similar type).

7.2 regions with defects on one or two boundary sides

The statement of our main results in the next chapter involves regions with defects
on one or two boundary sides. These regions are studied in this section.

Proposition 7.5. Let 1 6 a 6 b be positive integers with k = b− a > 0, then the number
of domino tilings of ARa,b(j) with k− 1 squares added to the southeastern side starting at
the second position (and not at the bottom) as shown in the Figure 7.8 for j > k is given by

2a(a+1)/2
(
a+ k− 1

j− 1

)(
j− 2

k− 1

)
3F2

[
1, 1− j, 1− k
2− j, 1− a− k

; 1
]

. (7.7)

If j 6 k − 1, then the number of tilings of ARa,b(j) with k − 1 squares added to the
southeastern side starting at the second position (and not at the bottom) as shown in the
Figure 7.9 is given by

2a(a+1)/2.

Proof. Let us denote the region in Figure 7.8 by AR
k−1,j
a,b and we work with the

planar dual graph of the region AR
k−1,j
a,b and count the number of matchings of that

graph.
We first deal with the case when j > k. We notice that the first added square in

any domino tiling of the region in Figure 7.8 by dominoes has two possibilities to be
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w

y

(a) AD(a).

x

z

(b) ARia,b+1,k.

w

x

(c) ARia,b+1,k.

y

z

(d) AD(a).

w

z

(e) ARia,b,k−1.

x

y

(f) ARa,b(2, 3, . . . ,k,k+ 1).

Figure 7.7: Forced dominoes in the proof of Proposition 7.4 where the vertices we remove
are labelled

matched up with squares marked in grey in Figure 7.10. This observation allows us
to write the number of tilings of AR

k−1,j
a,b in terms of the following recursion

M(AR
k−1,j
a,b ) = M(AR

k−2,j−1
a,b−1 ) + M(ARa,b(2, 3, . . . ,k, j)). (7.8)

which can be verified from Figure 7.11.
We can now continue to descend further in a similar way until we have no added

squares on the southeastern side remaining. Thus, we can repeat this process for
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k − 1 j

Figure 7.8: An Aztec rectangle with k− 1 squares added on the southeastern side and a
defect on the j-th position shaded in black; here a = 4,b = 10,k = 6, j = 8.

k − 1

j

Figure 7.9: An Aztec rectangle with k− 1 squares added on the southeastern side and a
defect on the j-th position shaded in black; here a = 4,b = 10,k = 6, j = 3.

AR
k−2,j−1
a,b−1 , then for AR

k−3,j−2
a,b−2 and so on. Repeatedly using equation (7.8) as a

template for this descend process k− 1 times successively, we shall finally obtain

M(AR
k−1,j
a,b ) =

k−2∑
l=0

M(ARa,b−l(2, 3, . . . ,k− l, j− l))+M(ARa,a+1(j−k+ 1)). (7.9)
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Figure 7.10: AR
k−1,j
a,b with the possible choices for the first added square in a tiling; here

a = 4,b = 10,k = 6, j = 8.

Now, plugging in the values of the quantities in the right hand side of equation
(7.9) from Theorem 1.2 and Corollary 7.1 we shall obtain the following.

M(AR
k−1,j
a,b ) =

k−2∑
l=0

2a(a+1)/2
(
a+ k− l− 1

a+ k− j

)(
j− l− 2

k− l− 1

)
(7.10)

+ 2a(a+1)/2
(

a

a+ k− j

)
=2a(a+1)/2

k−1∑
l=0

(
a+ k− l− 1

a+ k− j

)(
j− l− 2

k− l− 1

)
.

Using standard techniques, if we transform the above binomial sum into hypergeo-
metric notation, then we shall obtain equation (7.7).

For the case when j 6 k− 1, we see that there are many forced dominoes in any
tiling (see Figure 7.12) and the region we want to tile is reduced to an Aztec diamond
of order a, and this completes the proof.

Proposition 7.6. Let 1 6 a, i 6 b be positive integers with k = b− a > 0 and y =

min{i,k}, then the number of domino tilings of ARa,b with k− 1 squares added to the
southeastern side starting at the second position (and not at the bottom) as shown in the
Figure 7.13 and a defect on the northwestern side at the i-th position counted from the
western corner is given by

2a(a+1)/2
(
a

i− y

) y−1∑
l=0

(
a+ y− l− 2

y− l− 1

)
3F2

[
1, 1− y+ l, i− a− y
i− y+ 1, 2− a− y+ l

;−1
]

. (7.11)

Proof. We follow a similar approach for this proof, like we did in the proof of
Proposition 7.5. Let us denote the region in Figure 7.13 by ARa,b(k− 1; i) and we
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Figure 7.11: Choices for the tilings of AR
k−1,j
a,b with forced dominoes; here a = 4,b = 10,k =

6, j = 8.

Figure 7.12: AR
k−1,j
a,b , when j 6 k− 1; here a = 4,b = 10,k = 6, j = 3.

work with the planar dual graph of this region and count the number of matchings
of that graph. We first notice that the first added square in any tiling of the region
in Figure 7.13 by dominoes has two possibilities to be matched up with squares
marked in grey in Figure 7.14. This observation allows us to write the number of
tilings of ARa,b(k− 1; i) in terms of the following recursion (see Figure 7.15)

M(ARa,b(k− 1; i)) = M(ARa,b−1(k− 2; i− 1)) + M(ARia,b,k−1). (7.12)

As in the proof of Proposition 7.5, repeatedly using equation (7.12) y− 1 times on
successive iterations, we shall finally obtain

M(ARa,b(k− 1; i)) =
y−2∑
l=0

M(ARi−la,b−l,k−l) + M(ARa,a+1(i− y+ 1)) (7.13)
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i

k − 1

Figure 7.13: An Aztec rectangle with k− 1 squares added on the southeastern side and a
defect on the i-th position shaded in black; here a = 4,b = 10,k = 6, i = 7.

Figure 7.14: ARa,b(k− 1; i) with the possible choices for the first added square in a tiling;
here a = 4,b = 10,k = 6, i = 7.

where y = min{i,k}.
Now, plugging in the values of the quantities in the right hand side of equation

(7.13) from Proposition 7.4 and Corollary 7.1, and then transforming the binomial
sum into hypergeometric notations we shall obtain equation (7.11).

Proposition 7.7. Let a, i, j be positive integers such that 1 6 i, j 6 a, then the number of
domino tilings of AD(a) with one defect on the southeastern side at the i-th position counted
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Figure 7.15: Choices for the tilings of ARa,b(k− 1; i) with forced dominoes; here a = 4,b =

10,k = 6, i = 7.

i

j

Figure 7.16: An Aztec diamond with defects on adjacent sides; here a = 6, i = 4, j = 4.

from the south corner and one defect on the northeastern side at the j-th position counted
from the north corner as shown in Figure 7.16 is given by

2a(a−1)/2
(
a− 1

i− 1

)(
a− 1

j− 1

)
3F2

[
1, 1− i, 1− j
1− a, 1− a

; 2
]

.

Proof. We use induction with respect to a. The base case of induction is a = 2,
i = 1, 2, j = 1, 2. We check for the cases when, i = 1, j = 1, i = a and j = a separately.
So, for our base case, the only possibilities are i = 1 or i = a and j = 1 or j = a, so
we do not have to consider this case, once we consider the other mentioned cases.

We now note that when either i or j is 1 or a, some dominoes are forced in any
tiling and hence we are reduced to an Aztec rectangle of size (a− 1)× a. It is easy
to see that our formula is correct for this.

In the rest of the proof we assume a > 3 and 1 < i, j < a. Let us now denote the
region we are interested in this proposition as ADa(i, j). Using the dual graph of
this region and applying Theorem 6.1 with the vertices as labelled in Figure 7.17 we
obtain the following identity (see Figure 7.18 for details),
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y

z

w

x

Figure 7.17: An Aztec diamond with some labelled squares; here a = 6.

y

z

x

w

(a) ADa−1(i− 1, j− 1).

y

w

(b) ARa−1,a(j).

z

x

(c) ARa,a+1(i).

y

x

(d) AD(a− 1).

Figure 7.18: Forced dominoes in the proof of Proposition 7.7 where the vertices we remove
are labelled.

M(ADa(i, j))M(AD(a− 1)) =M(AD(a))M(ADa−1(i− 1, j− 1)) (7.14)

+ M(ARa−1,a(j))M(ARa−1,a(i)).
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Simplifying equation (7.14), we get the following

M(ADa(i, j)) = 2aM(ADa−1(i− 1, j− 1)) + 2a(a−1)/2
(
a− 1

j− 1

)(
a− 1

i− 1

)
(7.15)

where we used Theorem 1.1 and Corollary 7.1.
Now, using our inductive hypothesis on equation (7.15) we have the following

M(ADa(i, j)) = 2a · 2(a−1)(a−2)/2
(
a− 2

i− 2

)(
a− 2

j− 2

)
3F2

[
1, 2− i, 2− j
2− a, 2− a

; 2
]

+ 2a(a−1)/2
(
a− 1

i− 1

)(
a− 1

j− 1

)
= 2 · 2a(a−1)/2

(
a− 2

i− 2

)(
a− 2

j− 2

) ∞∑
k=0

(1)k(2− i)k(2− j)k
(2− a)k(2− a)k

2k

k!

+ 2a(a−1)/2
(
a− 1

i− 1

)(
a− 1

j− 1

)
= 2a(a−1)/2

(
a− 1

i− 1

)(
a− 1

j− 1

)[
2 · (1− i)(1− j)

(1− a)(1− a)

∞∑
k=0

2k · (2− i)k(2− j)k
(2− a)k(2− a)k

+ 1

]

= 2a(a−1)/2
(
a− 1

i− 1

)(
a− 1

j− 1

) ∞∑
k=0

2k · (1− i)k(1− j)k
(1− a)k(1− a)k

.

This completes the proof of our proposition.

Remark 9. Ciucu and Fischer [11] have a similar result for the number of lozenge tilings of
a hexagon with defects on adjacent sides (Proposition 3 in their paper). They also make use of
Kuo’s condensation result, Theorem 6.3 and obtain the following identity

ADJ(a,b, c)j,kADJ(a− 1,b, c− 1)j,k
=ADJ(a,b, c− 1)j,kADJ(a− 1,b, c)j,k
+ ADJ(a− 1,b+ 1, c− 1)j,kADJ(a,b− 1, c)j,k

where ADJ(a,b, c)j,k denotes the number of lozenge tilings of a hexagonHa,b,c with opposite
side lengths a,b, c with two defects on adjacent sides of length a and c in positions j and k
respectively, where a,b, c, j,k are non-negative integers with 1 6 j 6 a and 1 6 k 6 c.

In their use of Theorem 6.3, they take the graph G to be the planar dual graph of Ha,b,c

with two defects on adjacent sides of length a and c in positions j and k (the resulting
number of lozenge tilings of such a region is then ADJ(a,b, c)j,k), but if we take the graph
G to be the planar dual graph of Ha,b,c and use Theorem 6.1 with an appropriate choice of
labels we obtain the following identity

H(a− 1,b, c)ADJ(a,b, c)j,k
= H(a,b, c)ADJ(a− 1,b, c)j,k

+ H(c,a− 1,b+ 1, c− 1,a,b)kH(b− 1, c+ 1,a− 1,b, c,a)j

with the same notations as in Remark 8. Then, Proposition 3 of Ciucu and Fischer [11]
follows more easily without the need for contiguous relations of hypergeometric series that
they use in their paper.



8
A Z T E C R E C TA N G L E S W I T H B O U N D A RY D E F E C T S

This chapter deals with the problem of enumerating domino tilings of an Aztec
rectangle with the most general case of boundary defects possible.

8.1 main results

As already mentioned in Chapter 1, in order to create a region that can be tiled by
dominoes we have to remove b− a (henceforth denoted by k) more white squares
than black squares along the boundary of ARa,b. There are 2b white squares and
2a black squares on the boundary of ARa,b. We choose n+ k of the white squares
that share an edge with the boundary and denote them by β1,β2, . . . ,βn+k (we
will refer to them as defects of type β). We choose any n squares from the black
squares which share an edge with the boundary and denote them by α1,α2, . . . ,αn
(we refer to them as defects of type α). We consider regions of the type ARa,b \

{β1, . . . ,βn+k,α1, . . . ,αn}, which are more general than the type considered in
previous work [14, 37].

We now state the main results of this part below. The first result is concerned
with the case when the defects are confined to three of the four sides of the Aztec
rectangle (defects do not occur on one of the sides with shorter length), and provides
a Pfaffian expression for the number of tilings of such a region, with each entry in
the Pfaffian being given by a simple product or by a sum or product of quotients of
factorials and powers of 2. The second result gives a nested Pfaffian expression for
the general case when we do not restrict the occurrence of defects on any boundary
side. The third result deals with the case of an Aztec diamond with arbitrary defects
on the boundary and gives a Pfaffian expression for the number of tilings of such a
region, with each entry in the Pfaffian being given by a simple sum of quotients of
factorials and powers of 2.

We define the region ARka,b to be the region obtained from ARa.b by adding a
string of k unit squares along the boundary of the southeastern side as shown in
Figure 8.1. We denote this string of k unit squares by γ1,γ2, . . . ,γk and refer to them
as defects of type γ.

Theorem 8.1. Assume that one of the two sides on which defects of type α can occur
does not actually have any defects on it. Without loss of generality, we assume this to
be the southwestern side. Let δ1, . . . , δ2n+2k be the elements of the set {β1, . . . ,βn+k} ∪
{α1, . . . ,αn}∪ {γ1, . . . ,γk} listed in a cyclic order.

Then we have

M(ARa,b \ {β1, . . . ,βn+k,α1, . . . ,αn})

=
1

[M(ARka,b)]
n+k−1

Pf[(M(ARka,b \ {δi, δj}))16i<j62n+2k], (8.1)

77
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b

a
k

Figure 8.1: ARka,b with a = 4,b = 9,k = 5.

where all the terms on the right hand side are given by explicit formulas:

1. M(ARka,b) is given by Theorem 1.1,

2. M(ARka,b \ {βi,αj}) is given by Proposition 7.7 if βi is on the southeastern side and
not above a γ defect; otherwise it is 0,

3. M(ARka,b \ {βi,γj}) is given by Theorem 1.1 if βi is above a γ defect; it is given by
Proposition 7.6 if the β defect is in the northwestern side and its distance from the
western corner is more than the distance of the γ defect from the southern corner; it is
given by Propositions 7.5 if the β defect is on the southeastern side; otherwise it is 0,

4. M(ARka,b \ {βi,βj}) = M(ARka,b \ {αi,αj}) = M(ARka,b \ {αi,γj}) = M(ARka,b \

{γi,γj}) = 0.

Theorem 8.2. Let β1, . . . ,βn+k be arbitrary defects of type β and α1, . . . ,αn be arbitrary
defects of type α along the boundary of ARa,b. Then M(ARa,b \ {β1, . . . ,βn+k,α1, . . . ,αn})
is equal to the Pfaffian of a 2n× 2n matrix whose entries are Pfaffians of (2k+ 2)× (2k+ 2)

matrices of the type in the statement of Theorem 8.1.

In the special case when the number of defects of both types are the same; that is,
when k = 0 we get an Aztec diamond with arbitrary defects on the boundary and
the number of tilings can be given by a Pfaffian where the entries of the Pfaffian are
explicit, as stated in the theorem below.

Theorem 8.3. Let β1, . . . ,βn be arbitrary defects of type β and α1, . . . ,αn be arbitrary
defects of type α along the boundary of AD(a), and let δ1, . . . , δ2n be a cyclic listing of the
elements of the set {β1, . . . ,βn}∪ {α1, . . . ,αn}. Then

M(AD(a) \ {β1, . . . ,βn,α1, . . . ,αn})

=
1

[M(AD(a))]n−1
Pf[(M(AD(a) \ {δi, δj}))16i<j62n], (8.2)

where the values of M(AD(a) \ {δi, δj})) are given explicitly as follows:
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1. M(AD(a) \ {βi,αj})) is given by Proposition 7.7,

2. M(AD(a) \ {βi,βj})) = M(AD(a) \ {αi,αj})) = 0.

8.2 proofs of the main results

Figure 8.2: Removing the forced dominoes from ARka,b; here a = 5,b = 10, k = 5.

Proof of Theorem 8.1. We shall apply the formula in Theorem 6.5 to the planar dual
graph of our region ARka,b, and the vertices δ1, . . . , δ2n+2k. Then the left hand side
of equation (6.2) becomes the left hand side of equation (8.1), and the right hand
side of equation (6.2) becomes the right hand side of (8.1). We just need to verify
that the quantities expressed in equation (8.1) are indeed given by the formulas
described in the statement of Theorem 8.1.

The first statement follows immediately by noting that the added squares on
the southeastern side of ARka,b forces some dominoes. After removing this forced
dominoes we are left with an Aztec diamond of order a as shown in Figure 8.2,
whose number of tilings is given by Theorem 1.1.

The possibilities in the second statement are as follows. If a β square shares an
edge with some γl, then the region cannot be covered by any domino as illustrated
in the right image of Figure 8.3. Again, if βi is on the northwestern side at a distance
of at most k from the western corner, then the strips of forced dominoes along the
southwestern side interfere with the βi and hence there cannot be any tiling in
this case as illustrated in the left image of Figure 8.3. If neither of these situations
is the case, then due to the squares γ1, . . . ,γk on the southeastern side, there are
forced dominoes as shown in Figure 8.4 and then βi and αj are defects on an Aztec
diamond on adjacent sides and then the second statement follows from Proposition
7.7.

To prove the validity of the third statement, we notice that if an β and γ defect
share an edge then, there are two possibilities, either the β defect is above the γ
defect in which case we have some forced dominoes as shown in the left of Figure 8.6
and we are reduced to finding the number of domino tilings of an Aztec diamond;
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Figure 8.3: Choices of β defects that lead to no tiling of ARka,b.

Figure 8.4: Choice of β defect, not sharing an edge with some γl.

Figure 8.5: Choices of β and γ defects that lead to no tiling of ARka,b.

or the β defect is to the left of a γ defect, in which case, we get no tilings as shown
in the left of Figure 8.5 as the forced dominoes interfere in this case.
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If βi and γj share no edge in common, then we get no tiling if the β defect is
on the northwestern side at a distance of at most k− 1 from the western corner as
illustrated in the right of Figure 8.5. If the β defect is in the northwestern side at a
distance more than k− 1 from the western corner then the situation is as shown in
the right of Figure 8.6 and is described in Proposition 7.6. If the β defect is in the
southeastern side then the situation is as shown in the middle of Figure 8.6 and is
described in Proposition 7.5.

Figure 8.6: Choices of β and γ defects that lead to tiling of ARka,b.

The fourth statement follows immediately from the checkerboard drawing (see
Figure 1.2) of an Aztec rectangle and the condition that a tiling by dominoes exists
for such a board if and only if the number of white and black squares are the same.
In all other cases, the numbers of tilings is 0.

Proof of Theorem 8.2. Let AR be the region obtained from ARka,b by removing k of
the squares β1, . . . ,βn+k. We now apply Theorem 6.5 to the planar dual graph of
AR, with the removed squares chosen to be the vertices corresponding to the n
βi’s inside AR and to α1, . . . ,αn. The left hand side of equation (6.2) is now the
required number of tilings and the right hand side of equation (6.2) is the Pfaffian
of a 2n× 2n matrix with entries of the form M(AR\ {βi,αj}), where βi is not one of
the unit squares that we removed from ARka,b to get AR.

We now notice that M(AR \ {βi,αj}) is the number of domino tilings of an Aztec
rectangle with all its defects confined to three of the sides. So, we can apply Theorem
8.1 and it gives us an expression for M(AR \ {βi,αj}) as the Pfaffian of a (2k+ 2)×
(2k+ 2) matrix of the type described in the statement of Theorem 8.1.

Proof of Theorem 8.3. We shall now apply Theorem 6.5 to the planar dual graph of
AD(a) with removed squares chosen to correspond to β1, . . . ,βn,α1, . . . ,αn. The
right hand side of equation (6.2) is precisely the right hand side of equation (8.2).
If δi and δj are of the same type then AD(a) \ {δi, δj} does not have any tiling as
the numbers of black and white squares in the checkerboard setting of an Aztec
diamond will not be the same (see Figure 1.2). Finally, the proof is complete once
we note that AD(a) \ {βi,αj} is an Aztec diamond with two defects removed from
adjacent sides for any choice of βi and αj and is given by Proposition 7.7.

We now illustrate Theorem 8.1 with the help of an example. Throughout this
example, we will use the notations from previous sections without commentary.
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γ1

γ2

γ3β1

β2

β3

Figure 8.7: AR33,6 with the α,β,γ defects marked.

We consider the example in Figure 8.7 with a = 3,b = 6,k = 3,n = 0 and the set
{δ1, δ2, δ3, δ4, δ5, δ6} = {γ1,γ2,β1,γ3,β2,β3}. Then by equation (8.1) we have

M(AR3,6 \ {β1,β2,β3}) =
1

[M(AD(3))]2
Pf(A)

where the matrix A is

0 0 M(AD(3)) 0 M(AR2,4
3,6) M(AR2,5

3,6)

0 0 M(AD(3)) 0 M(AR1,3
3,5) M(AR1,4

3,5)

−M(AD(3)) −M(AD(3)) 0 0 0 0

0 0 0 0 M(AR3,4(2)) M(AR3,4(3))

−M(AR
2,4
3,6) −M(AR

1,3
3,5) 0 −M(AR3,4(2)) 0 0

−M(AR
2,5
3,6) −M(AR

2,4
3,5) 0 −M(AR2,3(3)) 0 0


.

If we now calculate all the quantities that appear in the matrix A using the results
mentioned in this paper, we shall get Pf(A) = 3932160 and hence

M(AR3,6 \ {β1,β2,β3}) = 960.

It is easy to see that this also agrees if we use Theorem 1.2 to calculate M(AR3,6 \

{β1,β2,β3}).
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A
E VA L UAT I O N O F S Y M P L E C T I C C H A R A C T E R S

Symplectic characters can be interpreted as a generating function of weighted
rhombus tilings of certain regions in the triangular lattice, which follows from the
work of Robert A. Proctor [32] and Henry Cohn, Larsen and Propp [12] (see also the
recent work of Ayyer and Fischer [4]). We shall use this description now to study
the symplectic character that appears in (3.17) (as well as in other chapters of Part i).

We start with a quartered hexagon in the triangular lattice, which is obtained
after cutting it along its axes, see Figure A.1. Let the top boundary of this quartered
hexagon be of length ` and the right boundary of length 2n. The left boundary
consists of a zig-zag line containing n up-pointing and n down-pointing triangles,
and the bottom boundary has protruded down-pointing triangles in positions
p1 < p2 < · · · < pn, numbered from left to right, starting with a 1. We denote such a
region by QHp1,p2,...,pn

2n,` . We note that the bottom row triangles force some rhombus
in any tiling, we shall remove such rhombi in the figures that follows.

We are interested in the rhombus tilings of these quartered hexagons. We assign a
weight of xi to each “left-oriented” rhombus ( ) that appears in the i-th row of a
tiling of QHp1,p2,...,pn

2n,` , and let all other rhombi that appear in a tiling to have weight
1. This weighted region is denoted by

QHp1,p2,...,pn
2n,` (x1, x2, . . . , x2n)

and the generating function of its rhombus tilings by

M(QHp1,p2,...,pn
2n,` (x1, x2, . . . , x2n)).

The result which we will use is the following.

Proposition A.1 (Theorem 2.8, [4]). For a partition λ = (λ1, λ2, . . . , λn) allowing also
zero parts, we have

Sp2n(λ; x1, x2, . . . , xn) =M(QHλn+1,λn−1+2,...,λ1+n
2n,λ1

(x1, x̄1, x2, x̄2, . . . , xn, x̄n)).

(A.1)

The quantity that we are interested in equation (3.17) is

Sp4n+2(n,n− 1,n− 1, . . . , 1, 1, 0, 0; x2, 1, . . . , 1)

=M(QH1,2,4,5,...,3n−2,3n−1,3n+1
4n+2,n (x2, x̄2, 1, . . . , 1)) (A.2)

For ease in the sequel, we use the following notation

QHn(x) = QH1,2,4,5,...,3n−2,3n−1,3n+1
4n+2,n (x2, x̄2, 1, . . . , 1) and QHn = QHn(1).

In general, we call something unweighted, if it has weight 1.
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Figure A.1: QH1,2,4,5,7
10,2 (x1, x2, . . . , x10).

Note that the weights in our case are manifest only in the first two rows of the
quartered hexagon (i.e., one zig-zag portion of the hexagon). There is precisely one
vertical rhombus ( ) in the first row (see Figure A.2), say in position j if counted
from left and starting with 1, and the rhombi that appear to its right in the first row
are all forced to be of the type , while no such rhombus appears left of the vertical
rhombus in the first row. Thus, the first row contributes x2(n+1−j) to the weight. In
the second row, all rhombi left of the bottom triangle of that fixed vertical rhombus
are of type and they contribute x2(−j+1) to the weight. Now, right of this vertical
rhombus there is precisely one vertical rhombus that has its upper triangle in the
second row, say in position i, and all rhombi right of this are of type , and they
contribute x2(−n−1+i) to the weight. The total weight is then x2(i−2j+1).

We let Qn,i denote the number of tilings of QHn with parameter i as described in
the previous paragraph and letting j vary in {1, 2, . . . , i}. Equivalently, letting QHn,i
denote the region obtained from QHn by deleting the top two rows as well as the
i-th down-pointing triangle in the (new) top row (see Figure A.3 for QHn,i, the
dotted lines are to be ignored at the moment), then Qn,i is the number of lozenge
tilings of QHn,i. Then, from the above discussion, we have

M(QHn(x)) =
∑

16j6i6n+1

Qn,ix
2i−4j+2. (A.3)

We shall now evaluate Qn,i using the Lindström-Gessel-Viennot [22, 29] technique,
where the first step is to transform a rhombus tiling of the region into a family of
non-intersecting lattice paths, and then evaluate the total number of such paths by
means of a determinant.

We mark the left sides of the up-pointing triangles of the left boundary in our
region by s1, s2, . . . , s2n from bottom to top, mark the right side of the deleted
(black) down-pointing triangle in the top row by s2n+1 and mark the left sides
of the deleted up-pointing triangles (by forcing) on the bottom boundary of our
region by e1, e2, . . . , e2n+1 from left to right. Any rhombus tiling of the region can
be transformed into a family of non-intersecting lattice paths, where each path starts
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Figure A.2: A tiling of QH5, where k = i = 2.

Figure A.3: A tiling of QH5,2.
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Figure A.4: The collection of non-intersecting lattice paths arising from the tiling of QH5,2.

at sj and ends in ej. An example of this in shown in Figure A.3, where the lattice
paths are given by the dotted lines.

We normalize the obtuse coordinate system in Figure A.3 and rotate it into the
position shown in Figure A.4, where the points sj have coordinates (j− 1, 2j− 1)
for 1 6 j 6 2n, s2n+1 has coordinates (2n− 1+ i, 4n− 1) and ej have coordinates
(b(3j− 1)/2c− 1, 0), for 1 6 j 6 2n+ 1. For ease of notation, we denote b(3j− 1)/2c
by aj. Now, we want to find the number of non-intersecting lattice paths beginning
at sj and ending at ej, 1 6 j 6 2n+ 1 with only down and east steps.

By the Lindström-Gessel-Viennot Lemma [22, 29], the number of such unweighted
non-intersecting lattice paths is given by the determinant of the (2n+ 1)× (2n+ 1)

matrix, whose (u, v)-th entry is the number qu,v of lattice paths from eu to sv. Thus,
we have

qu,v =


(
au + v− 1

2v− 1

)
1 6 u 6 2n+ 1, 1 6 v 6 2n(

au + 2n− 1− i

4n− 1

)
1 6 u 6 2n+ 1, v = 2n+ 1

,

and
Qn,i = det(qu,v)16u,v62n+1.

Expanding the determinant with respect to the (2n+ 1)-th column, we get

Qn,i =

2n+1∑
j=1

(−1)j+1Dn,j

(
aj + 2n− 1− i

4n− 1

)
,

where

Dn,j = det
16u62n+1,u6=j

16v62n

((
au + v− 1

2v− 1

))
.
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Taking out common factors and then swapping the v-th column with the (2n− v+ 1)-
th column for every v, we get that Dn,j equals

(−1)n(2n−1)
∏2n+1
i=1 ai

aj
∏2n
i=1(2i− 1)!

× det
16i62n+1,i 6=j
16k62n

((ai−2n+k)(ai−2n+k+1) . . . (ai−1)(ai+1) . . . (ai+2n− j)).

(A.4)

In order to evaluate this determinant, we need the following lemma, due to
Krattenthaler.

Lemma A.2 (Lemma 4, [24]). Let x1, x2, . . . , xr and y2,y3, . . . ,yr be indeterminates,
and c be a constant. Then we have

det

 r∏
k=j+1

(xi − yk − c)(xi + yk)


16i,j6r

=
∏

16i<j6r

(xj − xi)(c− xi − xj).

We take c = 0, xi = ai and yj = 2n − j + 1 in Lemma A.2 and evaluate the
expression in (A.4) to get

Dn,j =

2
2n+1∏
i=1

ai

2n∏
i=1

(2i− 1)!

∏
16p<q62n+1

(aq − ap)(ap + aq)

2n+1∏
q=1

(aj + aq)
2n+1∏
q=j+1

(aq − aj)
j−1∏
q=1

(aj − aq)

.

Therefore, we now have

M(QHn(x)) =
n+1∑
i=1

( x4i − 1

x2i−2(x4 − 1)

) 2n+1∑
j=1

(−1)j+1Dn,j

(
aj + 2n− 1− i

4n− 1

)
(A.5)

=
∑

16j6i6n+1

Qn,ix
2i−4j+2,

where

Qn,i =
3n(n−1)

2n−1(4n− 1)!

n−1∏
j=0

(4j+ 3)(6j+ 6)!
(2n+ 2j+ 1)!

n∑
j=0

[
27j(3j− 2n− i+ 2)4n−3(3n− 3j+ 1)

(3j)!(n− j)!(3j+ 1)3n

×
((
n− j+ 4

3

)
2j
(2n+ 3j− i− 1)2

(3n+ 3j+ 1)2
−

(
n− j+ 2

3

)
2j
(−2n+ 3j− i)2

(3n− 3j+ 1)2

)]

with (a)n = a(a+ 1) · · · (a+n− 1).



90 evaluation of symplectic characters

Remark 10. If we do not delete the first two rows of QHn, then taking a different family
of non-intersecting lattice paths with a similar weighing scheme, rather than the ones used
here, we would have arrived at the following generating function:

M(QHn(x))

= det
((
x2 +

1

x2

){(
4n

2n− 3j+ i

)
−

(
4n

2n− 3j− i

)}
+

(
4n

2n− 3j+ i+ 1

)
−

(
4n

2n− 3j− i− 1

)
+

(
4n

2n− 3j+ i− 1

)
−

(
4n

2n− 3j− i+ 1

))
16i,j6n

.
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hypergeometric series, 63
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Krattenthaler’s lemma, 89

Kuo condensation, 59
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non-intersecting lattice paths, 86, 88
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vertically symmetric ASMs, 17
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Schur function, 29, 33, 42
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quarter-turn grid, 50, 53

quasi quarter-turn grid, 54

triangular grid, 40

triangular U-turn grid, 44

U-turn grid, 16

UU-turn grid, 25

six-vertex weights, 14

symmetric difference of graphs, 60

symplectic group character, 19, 28, 32,
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tiling, 4

U-turn weights, 17

UU-turn weights, 24
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