Problem 1: Let
$$P = (G_{ij})$$
 and $Q = (b_{ij})$ be the 3x3 matrices
with $b_{ij} = 2^{i+j} a_{ij}$ for all $1 \le i, j \le 3$. If $dd P = 2$, then
what is det B? (JEE 2012)

Clearly,
$$\frac{\det Q}{\det P} = \text{constand}$$
. Then we can just identify
this constant.
Tust take $P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ then $Q = \begin{pmatrix} 8 & 00 & 0 \\ 0 & 160 \\ 0 & 0 & 64 \end{pmatrix}$.
So, $\det Q = 2^{12} //.$

Bothem 2: Ret 2 be a complex number 2.t. the imaginary
part of 2 is non-zero and
$$a = 2^2 + 2 + 1$$
 is real. Then
a cannot take the value:
(a) -1, (b) $1/2$, (c) $1/2$, (d) $3/4$. (JEE 2014).

$$\frac{S_{0}|^{n!}}{S_{0}|^{n!}} \quad \text{for } a = (n+iy)^{2} + (a+iy) + 1$$

$$\Rightarrow a = (n^{2} - y^{2} + n + 1) + i(2ny + y).$$
Since $a \in \mathbb{R}$ so, $2ny + y = 0 \Rightarrow 2n + 1 = 0$ since $y \neq 0$

$$= 3n = -\frac{1}{2}.$$
Thus, $a = \frac{3}{4} - \frac{y^{2}}{2}.$
As $f \in \mathbb{R}$, and $y \neq 0$, so $y^{2} > 0$. Hence, $a \ge \frac{3}{4}y$, so $a \neq \frac{3}{4}y$.

Problem 3: The fn f:
$$[0,3] \rightarrow [1,29]$$
 defined by
 $f(x) = 2x^3 - 15x^2 + 36x + 1$ is,
(a) (-1 f onto,
(b) onto but not 1-1.
(c) 1-1 but not onto,
(d) neithere 1-1 nor onto.

Sol^M:
$$f'(n) = 6n^2 - 30n + 3b = 6(n-2)(n-3)$$
.
Both nook of $f'(n)$ are kimple and lie in $[0,3]$.
So, f' is paritive on $[0,2]$ and negative on $(2,3]$
So, f is neither strictly increasing nor
decreasing on $[0,3]$ so $nA - 1-1$.
 f is increasing on $[0,2]$, the image
of $[0,2]$ is the interval $[f(0), f(2)] = [1,29]$.
Thus f' onto.
Are wor in $(b) \cdot //$.

Problem 4: Let
$$a_1, a_2, \dots$$
 be in Reservoir progression nite
 $a_1 = 5$ and $a_{20} = 25$. What is the least positive integer
 n for which $a_n < 0$? (JEE 2012).

Sol^m: Red bi = 1/ai, then bi's are in an A.P.
det the common diff. to d. there
$$b_1 = 1/a_1 = 1/5$$

 $b_{70} = 1/a_{70} = 1/25$.
Also, $b_{70} = b_1 + 19d \Rightarrow d = -4/475$.
So, $b_{71} = -4(n-1) + 1/5 = -4/475$.
So, $b_{71} = -4(n-1) + 1/5 = -4/475$.
Clearly $a_n \notin b_n$ have the same a_{77} .
Clearly $a_n \notin b_n$ have the same a_{77} .
The least value of n for which this is tone in $n = 25.1$

<u>Problem 5</u>: Let X and Y be two events e.t. $P(X|Y) = \frac{1}{2}$, $P(Y|X) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$. What is $P(X \cup Y)$? For X and Y independent? (JEE 2012)

$$\frac{S_{0}[N:}{P(X|Y)} = \frac{P(X|Y)}{P(Y)} = \frac{1}{2}$$

$$P(Y|X) = \frac{P(X|Y)}{P(X)} = \frac{1}{2}$$

$$\frac{1}{P(X)} = \frac{1}{2}$$

$$\frac{1}{P(X)} = \frac{1}{6}$$

$$S_{0}, P(X) = \frac{1}{2} \text{ and } P(Y) = \frac{1}{3}$$

$$P(X|Y) = P(X) + P(Y) - P(X|Y) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3}$$

$$\frac{1}{2}$$

$$Also, P(X|Y) = P(X)P(Y) \quad \text{Ao}_{2} \times \text{ and } Y \text{ are independent} \cdot \frac{1}{6}$$

Porblem 6: What is the centre of the circle inveribed in the
square determined by the two pairs of lines
$$\chi^{L} = 8\pi + 12 = 0$$

and, $\chi^{L} = 14 \chi + 45 = 0$? (JEE 2003)

Solving use get,
$$\pi = 2,6$$

 $J = 5,9$
The centre of the circle in the mid-pt. of the diagonal.
Pick the points (2,5) and (6,9). The mid pt.i,
 $\left(\frac{6+2}{2}, \frac{9+5}{2}\right) = (4,7).7$

 $\frac{\text{Postblem 7:}}{\text{of } (1+t^2)^{12} (1+t^{12})(1+t^{24})?} \qquad (JEE 2003)$

$$\frac{S_0[n!}{(1+t^{12})(1+t^{24})} = (1+t^{12}+t^{24}+t^{36}),$$

$$S_7, [t^{24}] = ([t^{24}] + [t^{12}] + [t^{0}])(1+t^{2})^{12}$$

$$= 1 + \binom{12}{6} + 1 = 2 + \binom{12}{6}, N.$$

Problem 8: What is the national domain of $f(\pi) = \sqrt{\sin^{-1}(2\pi) + \pi} 6?$ (JEE 2003)

Sol^{M:} For
$$\sin^{-1}(2\pi)$$
 to be defined we need $2\pi \in [-1,1]$,
and hence $\pi \in [-1/2, 1/2]$.
For $\sqrt{\sin^{-1}(2\pi) + \pi/6}$ to be defined we need,
 $\sin^{-1}(2\pi) > -\pi/6$ is $2\pi > \sin(-\pi/6)$
 $4 \Rightarrow 2\pi > -1/2$
 $4 \Rightarrow \pi > -1/2$
So, the anerver is $\pi \in [-1/4, 1/2]$.

Porte that
$$2^{n} \binom{n}{k} - 2^{n-1} \binom{n}{n-1} + \cdots + C-1 \binom{n}{k} \binom{n-1}{0}$$

$$= \binom{n}{k}.$$
(JEE 2003).

$$\frac{S_{0}(^{n})}{\omega} \quad \text{for } S = 2^{u} \binom{n}{0} \binom{m}{u} - 2^{u-1} \binom{n}{1} \binom{n-1}{u-1} + \dots + (-1)^{u} \binom{n}{v} \binom{n-u}{0}$$

$$= \binom{m}{v} \sum_{r=0}^{k} (-1)^{r} 2^{k-r} \binom{k}{r}$$

$$= \binom{m}{v} \dots$$

Portblem 10: Let
$$\alpha$$
 and β be the soots of $n^2 - 6n - 2 = 0$ with
 $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for $n > 1$, what in the value of $\frac{q_{10} - 2q_8}{2q_9}$?
(JEE 2011)

$$\frac{S_{0}^{n}}{3} \text{ we have, } \alpha \stackrel{1}{=} 6\alpha + 2$$

$$\Rightarrow \alpha^{n} = 6\alpha^{n-1} + 2\alpha^{n-2} - 1$$

$$and, \quad \beta^{n} = 6\beta^{n-1} + 2\beta^{n-2} - 2$$

$$(9 - 2) = \alpha_{n} = 6\alpha_{n-1} + 2\alpha_{n-2} \cdot 2$$

$$\Rightarrow \alpha_{10} = 6\alpha_{q} + 2\alpha_{8} \Rightarrow \frac{\alpha_{10} - 2\alpha_{8}}{2\alpha_{q}} = 2 \cdot 1/2.$$

Boblem 11: Let
$$(\tau_0, \gamma_0)$$
 to the solf of the following q_0^{MS} :
 $(2\pi)^{ln2} = (2\gamma)^{ln3}$
and $3^{ln\gamma} = 2^{ln\gamma}$.
What is the value of τ_0 ? (JEE 2011)

$$\frac{S_0 I^{n!}}{(2\pi)^{l_{n2}}} = (3\gamma)^{l_{n3}}$$

$$\Rightarrow ln(2\pi)^{l_{n2}} = ln(3\gamma)^{l_{n3}}$$

$$\Rightarrow (ln2)^2 + (lnx)(ln2) = (ln3)^2 + (lny)(ln3)$$

$$f (ln3)(lnn) = (ln2)(lny)$$
Solwig for lnx f lny we get, lnx = -ln2 $\Rightarrow \pi = \frac{1}{2}$

Potblem 12: Let
$$P = \{0: \sin 0 - \cos 0 = \sqrt{2} \cos 0\}$$
 and
 $Q = \{0: \sin 0 + \cos 0 = \sqrt{2} \sin 0\}$.
What is the relationship both P and Q? (JEE 2011)

$$\frac{S_0[N']}{S_0[n]} = \frac{S_0[n]}{S_0[n]} = \frac{S$$

Thank Jou!