JEE Mathematics: Dr. Manyil P Sailkia https://manjilscakia.in/olympiads manjil@iiitmampur.ac.in.

Problem 1: Let $P=\left(a_{i j}\right)$ and $Q=\left(b_{i j}\right)$ be fro 3×3 matrices with $b_{i j}=2^{i+j} a_{i j}$ for all $1 \leq i, j \leq 3$. If $\operatorname{dt} P=2$, then what is $\operatorname{det} B$? (IE 2012)

So ln: o he way would be to just unite

$$
\begin{aligned}
Q & =\left(\begin{array}{lll}
4 a_{11} & 8 a_{12} & 16 a_{13} \\
8 a_{21} & 16 a_{22} & 32 a_{23} \\
16 a_{31} & 32 a_{32} & 64 a_{33}
\end{array}\right) \\
\Rightarrow \operatorname{det} Q & =4 \times 8 \times 16 \operatorname{det}\left(\begin{array}{lll}
a_{11} & 2 a_{12} & 4 a_{13} \\
a_{21} & 2 a_{22} & 4 a_{23} \\
a_{31} & 2 a_{32} & 4 a_{33}
\end{array}\right) . \\
& =4 \times 8 \times 16 \times 2 \times 4 \times \operatorname{det} P \\
& =2^{13} \cdot \| .
\end{aligned}
$$

(There is an easier way!)

Clearly, $\frac{\operatorname{det} Q}{\operatorname{det} P}=$ constant. Then we can jut identify this constant.

Tu nt take $P=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ then $Q=\left(\begin{array}{ccc}8 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 64\end{array}\right)$.
So. $\operatorname{det} Q=2^{13} \cdot \|$.

Problem 2: Net z be a complex number $\& \cdot t$. the imaginary part of z is non-zero and $a=z^{2}+z+1$ is real. Then a connect take the value:
(a) -1 , (b) $1 / 3$, (c) $1 / 2$, (d) $3 / 4$. (JEE 2014).

Sol! Set $2=x+i y$, then $a=(x+i y)^{2}+(x+i y)+1$

$$
\Rightarrow a=\left(x^{2}-y^{2}+x+1\right)+i(2 x y+y) .
$$

Since $a \in \mathbb{R}$ so, $2 x y+y=0 \Rightarrow 2 x+1=0$ since $y \neq 0$

$$
\Rightarrow x=-1 / 2 .
$$

Thus, $a=3 / 4-y^{2}$
As $y \in \mathbb{R}$, and $y \neq 0$, so $y^{2}>0$. Hence, $a<3 / 4$, so $a \neq 3 / 4$.

Problem 3: The fo $f:[0,3] \rightarrow[1,29]$ defined by

$$
f(x)=2 x^{3}-15 x^{2}+36 x+1 \text { in, }
$$

(a) 1-1 \& outo,
(b) onto but not 1-1.
(c) 1-1 but not onto,
(d) neithere 1-1 wor onto.

So ln: $f^{\prime}(x)=6 x^{2}-30 x+36=6(x-2)(x-3)$.
Both rook of $f^{\prime}(x)$ are simple and lie in $[0,3]$.
So. f^{\prime} is positive on $[0,2$) and negative on $(2,3]$
So, f is neituce strictly increasing nor decreasing on $[0,3]$ to not 1-1.
fir increasing on $[0,2]$, the image of $[0,2]$ is the interval $[f(0), f(2)]=[1,29]$.

Thus f is onto.
Answer is (b). $/ /$.

Problem 4: Let a_{1}, a_{2}, \ldots, be in harmonic puogrenion nite $a_{1}=5$ and $a_{20}=25$. What is the least positive integer n for which $a_{n}<0$? (JEE 2012).

Soln: Let $b_{i}=1 / a_{i}$, then b_{i} 's are in an A.P.
Let the common diff. be d. Here $b_{1}=1 / a_{1}=1 / 5$

$$
b_{20}=1 / a_{20}=1 / 25
$$

Also, $b_{20}=b_{1}+19 d \Rightarrow d=-4 / 475$.
So, $b_{n}=\frac{-4(n-1)}{475}+1 / 5=\frac{96-4 n}{475}$.
Clearly $a_{n} \& b_{n}$ have the same sign.

$$
\therefore b_{n}<0 \text { iff } 96<4 n
$$

The lear value of n for which this in true in $n=25$.

Problem 5: Let X and Y be trio events e.t. $P(X \mid Y)=1 / 2, P(Y \mid X)=1 / 3$ and $P(X \cap Y)=1 / 6$. What is $P(X \cup Y)$? Are X and Y independent?
(JEE 2012)

So ln:

$$
\begin{aligned}
& P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=1 / 2 \\
& P(Y \mid X)=\frac{P(X \cap Y)}{P(X)}=1 / 3
\end{aligned}
$$

He o $p(X \cap Y)=1 / 6$.
So, $P(x)=1 / 2$ and $P(y)=1 / 3$.

$$
P(X \cup Y)=P(X)+P(y)-P(X \cap Y)=1 / 2+1 / 3-1 / 6=2 / 3 \text {. }
$$

Alto, $P(x \cap y)=P(x) P(y)$ so, x and y ace independent.

Problem 6: What in the centre of the circle inscribed in the square determined by the tho pairs of lines

$$
x^{2}-8 x+12=0
$$

and, $y^{2}-14 y+45=0$? (JEE 2003)

Soln: Solving we got,

$$
\begin{aligned}
& x=2,6 \\
& y=5,9
\end{aligned}
$$

The centre of the circle is the mid-pt. of the diagonal. pick the points $(2,5)$ and $(6,9)$. The mid pot is,

$$
\left(\frac{6+2}{2}, \frac{9+5}{2}\right)=(4,7)
$$

Problem 7: What is the coreffecient of t^{24} in the $\exp n$ of $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$? (JEE 2003)

Soln:

$$
\text { (n: } \begin{aligned}
&\left(1+t^{12}\right)\left(1+t^{24}\right)=\left(1+t^{12}+t^{24}+t^{36}\right) . \\
& \text { Si, }\left[t^{24}\right]=\left(\left[t^{24}\right]+\left[t^{12}\right]+\left[t^{0}\right]\right)\left(1+t^{2}\right)^{12} \\
&=1+\binom{12}{6}+1=2+\binom{12}{6} .
\end{aligned}
$$

Problem 8: What is the natural dornain of

$$
f(x)=\sqrt{\sin ^{-1}(2 x)+\pi / 6} ? \quad(\operatorname{GEE} 2003)
$$

Sols: For $\sin ^{-1}(2 x)$ to be defined we need $2 x \in[-1,1]$, and heme $x \in[-1 / 2,1 / 2]$.

For $\sqrt{\sin ^{-1}(2 x)+\pi / 6}$ to be defined we need,

$$
\begin{aligned}
\sin ^{-1}(2 x) \geqslant-\pi / 6 & \text { ie. } 2 x \geqslant \sin (-\pi / 6) \\
& \Leftrightarrow 2 x \geqslant-1 / 2 \\
& \Leftrightarrow x \geqslant-1 / 4 .
\end{aligned}
$$

Si, the answer is $x \in\left[-1 / 4, \frac{1}{2}\right]$.

Problem 9: Let n and k be positive integers $s-t . n \geqslant k$. Pore that

$$
\begin{aligned}
& 2^{k}\binom{n}{0}\binom{n}{n}-2^{n-1}\binom{n}{1}\binom{n-1}{n-1}+\cdots+(-1)\binom{n}{n}\binom{n-n}{0} \\
&=\binom{n}{n} . \\
&(\text { IE } 2003) .
\end{aligned}
$$

Soln:

$$
\begin{aligned}
\operatorname{Let} S & =2^{k}\binom{n}{0}\binom{n}{k}-2^{k-1}\binom{n}{1}\binom{n-1}{k-1}+\cdots+(-1)^{n}\binom{n}{k}\binom{n-n}{0} \\
& =\binom{n}{k} \\
\sum_{r=0}^{k}(-1)^{\gamma} 2^{k-r}\binom{k}{\gamma} & \underbrace{(1)}_{r^{\text {th }} \text { term of }(2-1)^{k}} \\
& =\binom{n}{k}
\end{aligned}
$$

Problem 10: Let α and β be the roots of $x^{2}-6 x-2=0$ with $\alpha>\beta$. If $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geqslant 1$, what is the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$?
(JEE 2011)

Soln: we have, $\alpha^{2}=6 \alpha+2$

$$
\begin{align*}
\Rightarrow \alpha^{n} & =6 \alpha^{n-1}+2 \alpha^{n-2} \tag{1}\\
\text { and, } \beta & \beta^{n} \tag{2}
\end{align*}=6 \beta^{n-1}+2 \beta^{n-2} .
$$

(1)

$$
\begin{aligned}
-(2) & \Rightarrow a_{n}=6 a_{n-1}+2 a_{n-2} . \\
& \Rightarrow a_{10}=6 a_{9}+2 a_{8} \Rightarrow \frac{a_{10}-2 a_{8}}{2 a_{9}}=3 \ldots
\end{aligned}
$$

Problem 11: Let $\left(x_{0}, y_{0}\right)$ be the sol" of the following eg "s:

$$
\begin{aligned}
(2 x)^{\ln 2} & =(3 y)^{\ln 3} \\
\text { and } \quad 3^{\ln x} & =2^{\ln y .}
\end{aligned}
$$

what is the value of x_{0} ?
(JEE 2811)

So ln: Take logaritinm an both sides to god,

$$
\begin{aligned}
& (2 x)^{\ln 2}=(3 y)^{\ln 3} \\
\Rightarrow & \ln (2 x)^{\ln 2}=\ln (3 y)^{\ln 3} \\
\Rightarrow & (\ln 2)^{2}+(\ln x)(\ln 2)=(\ln 3)^{2}+(\ln y)(\ln 3) \\
\& & (\ln 3)(\ln x)=(\ln 2)(\ln y)
\end{aligned}
$$

Solving for $\ln x \& \ln y$ we get, $\ln x=-\ln 2 \Rightarrow x=1 / 2$

Problem 12: Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and

$$
Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\} .
$$

What in the relationship bet P and Q ? (VEE 2011)

Soln:

$$
\begin{aligned}
\sin \theta-\cos \theta=\sqrt{2} \cos \theta & \Rightarrow(\sqrt{2}+1) \cos \theta=\sin \theta \\
\sin \theta+\cos \theta=\sqrt{2} \sin \theta & \Rightarrow(\sqrt{2}-1) \sin \theta=\cos \theta \\
& \Rightarrow \cos \theta=\frac{\sin \theta}{\sqrt{2}+1} \\
& \Rightarrow(\sqrt{2}+1) \cos \theta=\sin \theta
\end{aligned}
$$

Si, $P=Q$

Thank you!

